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Introduction 
 

Motion Freeze is an algorithm for head motion artifact 

correction independently developed by United Imaging, 

leveraging deep learning technology. The algorithm 

constructs a large-scale training dataset through the 

simulation of motion artifacts and then employs deep 

learning techniques to achieve artifact correction. 

Firstly, the algorithm employs real head CT images 

without motion artifacts. Through a motion model, it 

simulates head movement in three-dimensional space 

with varying degrees of rotation, translation, and 

oscillation, including complex combinations of these 

motion patterns. This simulation leads to the production 

of images exhibiting induced motion artifacts. 

Subsequently, using real images and their 

corresponding simulated counterparts with artifacts, a 

comprehensive training dataset consisting of over ten 

thousand pairs of head images—each pair containing 

one image with motion artifacts and another without is 

constructed. Building on this foundation, the Motion 

Freeze algorithm leverages deep learning techniques to 

develop a neural network capable of effectively 

correcting motion artifacts in head CT images. 

Benefiting from the network training adequately 

considering complex head motion patterns and the 

deep learning network's ability to interpret images 

globally, the Motion Freeze algorithm can accurately 

identify and correct motion artifacts in head images. 

While correcting the motion artifacts, it maintains the 

normal display of cranial tissue structures. 

The following sections will provide an overview of the 

clinical background of head imaging, outline the 

challenges in motion artifact correction, then detail the 

algorithm principles of Motion Freeze, and finally, 

demonstrate its clinical application outcomes. 
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Clinical Background 

CT has been widely utilized in the clinical diagnosis of 

various brain conditions, including brain tumors, 

hydrocephalus, brain hemorrhage, stroke, and trauma.  

In emergency scenarios, patients may be unable to 

comply with medical instructions due to factors such as 

anxiety, medical conditions (e.g., nerve damage, hearing 

impairment, involuntary tremors in elderly patients, or 

traumatic pain) [1,2], leading to uncontrollable head 

movements. These movements often result in motion 

artifacts, which are a significant cause of failed head 

imaging procedures. 

For patients experiencing head movement during 

scanning, the scan may be terminated, and the process 

repeated to obtain images meeting clinical diagnostic 

requirements. However, re-scanning increases the 

patient's radiation exposure and the duration of the 

examination. Correcting motion artifacts in head CT 

images using algorithms minimizes the need for 

repeated scans, thereby offering significant clinical 

application value.
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The challenge of motion artifact 

correction

Researchers have proposed various approaches for 

correcting motion artifacts. 

Some methods involve removing data affected by 

motion from the raw data [3,4], but this approach is only 

suitable for scenarios where motion occurs in a 

continuous and concentrated manner. However, 

excessive removal of data may negatively impact the 

quality of image reconstruction. 

Literature [5] employs an iterative approach to estimate 

motion vector sequences, aiming to find a function that 

represents the strength and influence of motion. 

Through iterative processes, the method seeks to 

minimize this function to achieve motion correction. 

However, the function representing the impact of 

motion is critical to the correction's effectiveness. Due to 

the complexity and variability of motion, such a 

generalized function is challenging to obtain. 

Additionally, the iterative reconstruction process is 

highly time-consuming and impractical for clinical 

applications. 

To overcome these limitations, United Imaging adopted 

a deep learning-based approach for head motion 

artifact correction. This method leverages deep learning 

algorithms to address the issue of time-consuming 

iterative solutions, while employing a motion simulation 

model to solve the challenge of obtaining a "gold 

standard" for deep learning algorithms. This approach 

ensures both the speed of image reconstruction and the 

correction effect, making it highly significant for clinical 

applications. 
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Introduction of Motion Freeze 

Motion Freeze is a head motion artifact correction algorithm based on deep learning technology. The algorithm 

primarily comprises three main components: Construction of the Training Dataset, Construction of the Convolutional 

Neural Network, and Network Training and Validation.

1. Construction of the Training Dataset 

Building an appropriate training dataset is an essential 

step in deep learning technology. However, in clinical 

scanning scenarios, obtaining images with motion 

artifacts and their corresponding artifact-free gold 

standard images simultaneously is often challenging 

due to various reasons. The scarcity of such training 

data has hindered the progress of deep learning-based 

algorithms for head motion artifact correction. 

To tackle this issue, United Imaging introduced an 

innovative solution [6]. The approach involves using 

clinical images without motion artifacts as gold standard 

images. These gold standard images are then subjected 

to motion artifact simulation to generate images 

resembling those with motion artifacts observed in 

clinical scenarios. Through this process, a training 

dataset consisting of over ten thousand image pairs, 

each containing one image with motion artifacts and 

another without has been constructed.  

The motion artifact simulation process is illustrated in 

Figure 1, involves simulating the scanning of three-

dimensional motion-free head images in a simulator. 

During the simulation, random rigid motion is 

introduced. The data is reconstructed using 3D forward 

projection and filtered back-projection, resulting in 

simulated images that contain motion artifacts. 

The motion simulation model encompasses common 

clinical motion patterns, including translational, 

rotational, oscillatory, and mixed motion modes 

incorporating multiple patterns. During the simulation, 

random motion patterns are added at random scanning 

angles, maximizing the representation of motion's 

randomness and complexity in clinical scenarios.  

The images with motion artifacts, generated through 

motion simulation as shown in Figure 2, were assessed 

by radiologists with over five years of experience. Their 

evaluation indicated that the artifacts closely resemble 

those seen in clinical scenarios, thus effectively 

representing the extent of motion artifacts in clinical 

images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of Motion Artifact Simulation
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Figure 2. Motion Model-Generated Images with Motion Artifacts 

2. Convolutional neural network construction 
Neural network construction is a core step in deep 

learning technology. Only by building an appropriate 

neural network and continuously training it can the 

desired outcome of artifact correction be achieved. 

Motion artifacts caused by head movement often 

extend over a large area, from the skull outward. 

Therefore, a larger receptive field in the neural network 

is necessary to capture more artifact information 

effectively. In medical image-related deep learning 

applications, the U-net architecture is often considered. 

U-net includes downsampling processes, and as 

downsampling progresses, the receptive field gradually 

expands, allowing more low-frequency information to 

be perceived in the image. However, downsampling also 

leads to a loss of spatial resolution in the image. 

Consequently, it's essential to preserve spatial 

resolution during network construction. 

Based on these considerations, United Imaging 

developed a 3D convolutional neural network. Building 

upon the U-net architecture, they incorporated 

elements from ResNet. While U-net ensures a large 

receptive field, the integration of ResNet helps maintain 

image spatial resolution. 

Figure3.  Network Training and Validation Process of the Motion Freeze Algorith
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3. Network Training and Validation 
Using gold-standard data, a 3D motion model is utilized 

to construct datasets of more than ten thousand image 

pairs for network training and validation, with the 

workflow shown in Figure 3. 

For network training, input head images containing 

motion artifacts into the convolutional neural network 

for correction. Then, compare the output images with 

the gold-standard images. Re-introduce the output 

images into the convolutional neural network, 

continuously adjusting parameters through iteration. As 

the number of iterations increases, image quality 

progressively improves. The iterative process concludes 

when the correction meets the predetermined 

requirements, yielding the final corrected image. 

After completing network training, validate the 

network's performance using validation dataset images. 

For a more comprehensive quantitative assessment, 

introduce metrics including the Mean Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural 

Similarity Index (SSIM) to evaluate clinical image data [7]. 

MSE reflects the average discrepancy between the 

corrected and gold-standard images; a smaller value 

indicates better network performance. PSNR measures 

image quality, with higher values indicating better 

quality. SSIM assesses the similarity between two 

images, considering parameters such as brightness, 

contrast, and structure; a higher value implies greater 

similarity. Calculate these metrics for both motion-

affected (images with artifacts) and corrected images 

relative to the gold-standard, with quantitative results 

presented in Table 1. Compared to motion-affected 

images, corrected images show significant 

improvements in MSE, PSNR, and SSIM metrics by 44.1%, 

15.8%, and 7.4%, respectively.  

 

Table 1. The quantitative comparison between Motion Image and Corrected Image 

  

MSE 0 0.03 ± 0.03 0.01 ± 0.02 

PSNR - 16.89 ± 4.46 19.55 ± 4.27 

SSIM 1 0.73 ± 0.08 0.78 ± 0.08 
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Clinical Applications Evidence 

To further demonstrate the performance of Motion 

Freeze in practical clinical applications, we utilized 

multiple clinical cases to showcase the advantages of 

Motion Freeze in motion artifact correction. 

Figure 4 presents the head CT images of a 91 - year - old 

elderly patient. The patient suffered from hearing loss 

and a head injury. During the first scan, strip-shaped 

artifacts caused by head movement appeared in the 

head images, which affected the doctor's diagnosis. To 

obtain images that met the requirements of clinical 

diagnosis, a second head scan was conducted on this 

patient. 

The first scanned image with motion artifacts was 

reconstructed using Motion Freeze. As evaluated by the 

diagnosing doctor, Motion Freeze could effectively 

improve the strip-shaped artifacts caused by movement 

and preserve clear brain structures, achieving an 

imaging effect comparable to that of the second scan 

without motion artifact

Figure 4. 91-year-old head trauma case. (a) Motion artifacts (first scan), (b) Motion Freeze reconstruction, (c) Artifact-free image (second scan).

  



8 

Figure 5 illustrates the comparison of corrected and 

uncorrected images with motion artifacts using 

transverse, sagittal, and coronal views. In this patient's 

scans, motion artifacts were evident in the midbrain, 

temporal lobes, forehead region, and cerebellum at the 

skull base, impairing diagnostic assessment. Following 

reconstruction with the Motion Freeze algorithm, the 

linear artifacts were significantly reduced while 

preserving brain structure integrity. Radiologists 

evaluated that the corrected images match the 

diagnostic quality of artifact-free images, providing 

enhanced clarity and accuracy for clinical decision-

making. 

 

Figure 5. A head trauma case. Top to bottom: axial, sagittal, and coronal head slices; left to right: (a) motion artifact-affected initial scan, (b) Motion 

Freeze-reconstructed image, (c) follow-up scan without artifacts.
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The patient in Figure 6 had severe injuries and was 

unable to cooperate with the scanning process. Motion 

artifacts appeared at the skull base during the first scan. 

To obtain diagnosable images, another scan was 

conducted with assistance from the patient's family 

member inside the scanning room to immobilize the 

patient's head. 

As shown in the figure, while this approach eliminated 

motion artifacts, the family member also received 

additional radiation dose, and strip-shaped artifacts 

caused by the hands on both sides were introduced. The 

image with motion artifacts was reconstructed using 

Motion Freeze. As evaluated by the diagnosing doctor, 

Motion Freeze could effectively improve the motion 

artifacts and provide images that meet the 

requirements of clinical diagnosis. 

 

 

Figure 6. Case of auxiliary fixation: From left to right: (a) Images with motion artifacts after the first scan, (b) Images reconstructed using the Motion 

Freeze algorithm after the first scan, and (c) Images from the second scan showing no motion artifacts, achieved through family member’s auxiliary 

fixation 
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Figure 7. Brain Perfusion Cases. (a)-(h) depict eight groups of brain perfusion images, specifically including Multi-Planar Reconstruction (MPR) 

images, Cerebral Blood Volume (CBV) images, Cerebral Blood Flow (CBF) images, Mean Transit Time (MTT) images, Time to Peak (TTP) images, 

Relative Cerebral Blood Flow (rCBF) images, Tmax images, and Mismatch images. Each group comprises two images: the first being the image 

obtained before applying the Motion Freeze algorithm, and the second being the reconstructed image after Motion Freeze.  
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Summary 

Motion Freeze is a head motion artifact correction 

technology that first introduced by United Imaging. It 

employs deep learning technology, which not only 

overcomes the problem of taking a great deal of time in 

traditional iterative correction methods, but also 

ingeniously solves the issue of the difficulty in obtaining 

gold standard images for deep learning algorithms 

through the concept of simulating motion artifacts. The 

introduction of Motion Freeze represents a significant 

breakthrough in the correction of head motion artifacts. 

The Motion Freeze algorithm employs deep learning 

technology to correct head motion artifacts, 

substantially improving image quality by mitigating 

artifacts caused by patient head movements. It 

minimizes the need for repeated scans and additional 

radiation exposure while ensuring rapid image 

reconstruction, making it highly significant in clinical 

applications. 
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