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Introduction 

 

Computed tomography (CT) is an essential imaging 

modality in modern medicine, playing a pivotal role in 

disease diagnosis, treatment planning, and 

interventional guidance. However, conventional CT 

systems are inherently constrained by field-of-view 

(FOV) limitations, which restrict anatomical coverage 

and can compromise diagnostic accuracy. The standard 

scan field of view (SFOV) is dictated by the geometry of 

the CT detector and source, often failing to 

accommodate patients with larger body sizes or non-

standard imaging positions. These constraints lead to 

image truncation, geometric distortions, and loss of 

anatomical information, presenting significant 

challenges in both diagnostic and therapeutic 

applications. 

To address these limitations, Extended Field of View 

(EFOV) technology was introduced, leveraging 

projection extrapolation and optimized reconstruction 

algorithms to extend anatomical coverage. This 

advancement represented a milestone in CT imaging, 

improving visualization beyond the conventional SFOV 

and enhancing clinical utility. 

Despite these improvements, conventional EFOV 

algorithms exhibited fundamental limitations that 

hindered their reliability in real-world applications. 

Truncation artifacts remained a major concern due to 

incomplete projection data, introducing severe image 

artifacts along the extended boundary. Additionally, CT 

number inaccuracies in the extrapolated region 

compromised quantitative imaging, which is critical for 

applications such as radiation therapy planning, tumor 

characterization, and bone density assessment. 

Geometric distortions and contour discontinuities 

further degraded image fidelity, particularly in high-

precision imaging applications such as orthopedic and 

cardiovascular assessments. 

To overcome these challenges, we developed Ultra 

EFOV, a next-generation extended-field reconstruction 

algorithm that integrates deep learning with physics-

based modeling. Ultra EFOV was designed to suppress 

truncation artifacts, improve geometric accuracy, and 

ensure precise CT number calibration in the extended 

region. Additionally, it enhances anatomical contour 

continuity, preserving the natural structure of tissues 

while mitigating distortion effects. 

Ultra EFOV is designed to support various CT scanner 

models from UIH, ensuring superior image quality 

across both routine diagnostic imaging and high-

precision applications. The algorithm is compatible with 

systems that expand from an SFOV of 500 mm to an 

EFOV of 820 mm, as well as those extending from an 

SFOV of 630 mm to an EFOV of 870 mm. The 

algorithm’s robustness has been rigorously validated 

across multiple scanner platforms and diverse clinical 

scenarios, demonstrating strong generalizability and 

reliability. 

This paper provides a comprehensive analysis of Ultra 

EFOV, detailing its technical principles, workflow, model 

training process, and multi-scenario validation results. 

Additionally, we explore its clinical impact, particularly 

in radiation therapy planning and quantitative imaging 

applications, where extended-field accuracy is crucial. 
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Challenges and Limitations of Traditional 

EFOV Algorithms 

Extended Field of View (EFOV) technology was 

developed to mitigate the inherent field-of-view 

constraints of standard scan field-of-view (SFOV) by 

extrapolating projection data, allowing for expanded 

anatomical coverage. While this approach extends the 

imaging range beyond the SFOV, conventional EFOV 

algorithms remain fundamentally limited in their ability 

to achieve high-precision imaging in complex clinical 

scenarios. These limitations stem from the inherent 

assumptions used in projection data extrapolation, 

resulting in geometric distortions, truncation artifacts, 

and inaccuracies in CT number calibration, all of which 

undermine diagnostic accuracy and restrict its 

applicability in fields such as radiation therapy planning 

and orthopedic imaging. 

A major challenge of traditional EFOV algorithms is 

their reliance on mathematical models to estimate 

missing projection data. These methods assume a 

predictable relationship between truncated and non-

truncated regions, which can work effectively in 

homogeneous anatomical structures. However, this 

assumption fails in complex cases involving 

heterogeneous tissues, high-density structures, or large 

anatomical variations. In regions with bony structures 

or multi-layered soft tissues—such as the pelvis in 

obese patients—extrapolation-based reconstruction 

often leads to geometric distortions and structural 

inconsistencies, degrading image fidelity and reducing 

the reliability of quantitative assessments. Moreover, 

truncation artifacts remain a pervasive issue, 

particularly along the periphery of the extended field, 

where limited projection data results in blurred edges, 

streak artifacts, and anatomical discontinuities. These 

artifacts obscure critical details and compromise both 

qualitative visualization and quantitative analysis (Fig. 

1). 

 

Figure 1: Artifacts in conventional EFOV algorithms affecting extended-

field image quality 

Another critical limitation of conventional EFOV 

algorithms is the inaccuracy of CT number (Hounsfield 

Units, HU) calibration in the extended region, which has 

direct implications for quantitative imaging 

applications. Accurate HU values are essential for tasks 

such as radiation therapy dose calculations, tumor 

characterization, and bone density analysis. However, 

because conventional EFOV relies on extrapolated 

projection data, significant HU deviations frequently 

occur, particularly in regions containing bone or other 

high-density structures. The severity of these 

deviations is further exacerbated when dense 

materials, such as cortical bone, are located near the X-

ray source but outside the SFOV, where beam 

hardening effects and metal-induced artifacts distort 

HU values. These inaccuracies introduce uncertainties 

in dose calculations and tissue characterization, directly 

impacting radiotherapy planning and orthopedic 

imaging workflows. 

In addition to HU inconsistencies, geometric distortions 

and contour discontinuities further limit the 

effectiveness of traditional EFOV algorithms. The 

reconstructed boundaries in the extended region often 
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lack smoothness and anatomical integrity, creating 

artifacts that interfere with applications requiring 

precise anatomical delineation, such as orthopedic 

surgery planning and radiation therapy contouring. 

This issue is particularly pronounced when high-density 

structures within the EFOV remain unconnected to the 

SFOV, leading to errors in extrapolation and 

subsequent misalignment of anatomical features. 

Structural deformations are further exacerbated in 

cases involving large-body patients or off-center 

positioning, reducing the reliability of EFOV-based 

reconstructions in challenging clinical conditions (Fig. 

2). 

 

Figure 2: Geometric distortions and contour discontinuities in 

conventional EFOV algorithms 

Despite the advantages of EFOV in extending the 

imaging field, its inherent limitations—truncation 

artifacts, HU inaccuracies, geometric distortions, and 

anatomical discontinuities—severely restrict its 

reliability in high-precision clinical applications. In 

radiation therapy, these limitations can compromise 

dose distribution accuracy, affecting treatment 

outcomes. In orthopedic imaging, distorted 

reconstructions can obscure critical bony landmarks, 

leading to errors in surgical planning. To enhance the 

clinical applicability of EFOV, future advancements 

must focus on improving HU consistency, eliminating 

truncation-induced artifacts, enhancing geometric 

fidelity, and refining anatomical boundary preservation. 

To address these challenges, Ultra EFOV introduces an 

advanced reconstruction paradigm that integrates 

deep learning with physics-based modeling. By 

leveraging deep neural networks trained on diverse 

anatomical datasets, Ultra EFOV effectively 

compensates for missing projection data, minimizes 

truncation artifacts, and preserves geometric accuracy 

in the extended field. Unlike traditional extrapolation-

based methods, Ultra EFOV refines image 

reconstruction by iteratively correcting residual errors 

in projection domain data, ensuring more accurate 

anatomical representation. Through these 

advancements, Ultra EFOV establishes a new standard 

for extended-field CT imaging, enabling greater 

precision in quantitative analysis, improved anatomical 

continuity, and broader applicability across clinical 

imaging scenarios. 
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Ultra EFOV: High-Precision Extended 

Field Reconstruction Algorithm  

The quality of CT imaging plays a critical role in the 

diagnosis and treatment planning of complex cases. To 

overcome the limitations of traditional EFOV 

techniques, Ultra EFOV represents a paradigm shift in 

extended-field CT imaging by integrating deep learning 

with physics-based modeling. This hybrid approach 

systematically addresses the limitations of 

conventional EFOV by enhancing geometric accuracy, 

ensuring HU value precision, and effectively 

suppressing artifacts. This chapter provides a 

comprehensive analysis of Ultra EFOV's core workflow, 

model architecture, training methodology, and 

performance evaluation. 

 

Ultra EFOV Workflow: Synergy of Deep Learning and Physical 
Modeling 

Core Workflow for Ultra EFOV 

Ultra EFOV integrates a deep learning-based residual 

correction framework with conventional projection 

extrapolation, effectively reducing artifacts and HU 

inconsistencies. The neural network is trained to 

iteratively refine the residual errors between truncated 

and full-FOV reconstructions, progressively enhancing 

its ability to predict missing data. The fundamental 

principle of Ultra EFOV is the intelligent processing of 

projection domain data to mitigate discontinuities that 

degrade image quality. By integrating optimized 

filtering during the filtered back projection (FBP) 

process, Ultra EFOV effectively reduces truncation 

artifacts, ensuring greater image uniformity and 

precision. 

The algorithm workflow, illustrated in Figure 3, begins 

with an initial image reconstruction phase where data 

within the SFOV (Standard Field of View) is separated 

from the extrapolated EFOV (Extended Field of View) 

regions. Unlike conventional methods, Ultra EFOV not 

only leverages truncated region data but also 

incorporates information from adjacent SFOV areas, 

using this as a reference for correcting missing 

projection data. This data fusion strategy compensates 

for EFOV region deficiencies, providing a robust 

foundation for deep learning-based refinement. 

In the deep learning phase, the algorithm employs 

convolutional neural networks (CNNs) to extract multi-

dimensional features, mapping input anatomical 

structures to higher-level semantic representations. 

Specifically, the network generates a residual map, 

representing artifacts, geometric discrepancies, and HU 

deviations in the extended region. The residual is 

iteratively optimized through multi-step learning, and 

upon convergence, it is integrated with the initial 

reconstruction to produce a fully corrected image. 

By jointly processing SFOV and EFOV data, Ultra EFOV 

achieves precise anatomical restoration in extended 

regions while significantly improving HU value 

consistency. This workflow not only maintains 

structural continuity across the expanded field but also 

effectively suppresses truncation artifacts and 

distortion. Furthermore, because the algorithm 

exclusively operates on extrapolated regions without 

modifying the SFOV data, it ensures that the core image 

quality and HU fidelity within the standard field remain 

uncompromised, maintaining overall consistency and 

reliability. 
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Figure 3: Ultra EFOV Algorithm Workflow 

With deep learning at its core, Ultra EFOV bridges the 

gap between data-driven AI approaches and traditional 

physics-based reconstruction, overcoming the 

longstanding limitations of conventional EFOV methods 

and setting a new benchmark for extended-field 

imaging. 

Large-Scale Data Training and 

Generalization Performance 

To ensure robustness and adaptability across diverse 

clinical scenarios, Ultra EFOV was trained using a multi-

domain dataset of over 500,000 simulated images, 

spanning varied radiation doses, anatomical structures, 

and truncation conditions. The training pipeline 

incorporated contrastive learning to distinguish 

truncated projection patterns from full-FOV images, 

enhancing generalization across scanner types and 

clinical conditions. The dataset includes variations in 

radiation dose, anatomical structures, and complex 

imaging conditions such as chest, abdomen, pelvis, and 

extremities, providing the model with broad exposure 

to clinically relevant cases. This large-scale training 

strategy significantly enhances Ultra EFOV’s 

generalization capability, ensuring stable performance 

across different CT scanners and clinical environments. 

During training, the neural network receives input 

consisting of truncated EFOV data and partial SFOV 

projections containing truncation artifacts. To guide the 

learning process, the model also incorporates ground 

truth images obtained from an extended detector 

simulation, along with the residual difference between 

the simulated extended view and truncated data 

(Residual 1). The algorithm then iteratively generates 

Residual 2, an estimated correction map, and 

compares it with Residual 1 to quantify prediction 

errors. These differences are minimized through 

backpropagation and iterative parameter optimization, 

allowing the model to progressively refine its 

extrapolation accuracy. 

This training strategy is based on a contrastive learning 

framework, where the network continuously learns 

from discrepancies between complete and truncated 

data. As the model undergoes multiple training 

iterations, prediction errors are systematically reduced, 

ensuring that the final output achieves high-fidelity 

anatomical reconstruction while eliminating truncation-

induced image degradation. Additionally, this method 

significantly improves overall image uniformity and 

enhances consistency across the extended region. 

Beyond standard cases, Ultra EFOV has been 

specifically trained to handle challenging clinical 

scenarios, such as off-center positioning, where 

conventional EFOV techniques often struggle. By 

incorporating a diverse set of complex imaging 

conditions, the model demonstrates exceptional 

resilience to high-noise, high-truncation datasets, 

ensuring consistent performance across a broad range 

of clinical applications. This adaptability makes Ultra 

EFOV particularly valuable for radiation therapy 

planning and orthopedic imaging, where precision 

imaging is essential. 
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Through its systematic training approach and 

continuous optimization, Ultra EFOV delivers superior 

image quality in extended regions while maintaining 

highly generalized performance across multiple CT 

platforms. By addressing the fundamental weaknesses 

of conventional EFOV methods, it establishes a robust 

and scalable solution for extended-field CT imaging. 

 

 

Figure 4: Ultra EFOV Deep Learning Training Process. 

Multi-Scenario Validation of Ultra EFOV Performance

The performance of the Ultra EFOV algorithm was 

comprehensively evaluated through quantitative and 

qualitative assessments to validate its stability and 

adaptability across diverse clinical applications. 

Quantitative evaluation was conducted using water 

phantoms and electron density phantoms (Model 1472, 

Gammex Inc.), hereafter referred to as the Gammex 

phantom, to assess HU accuracy and boundary 

precision. Qualitative evaluation involved clinical 

imaging data reviewed by radiology experts to assess 

improvements in image quality and anatomical 

consistency. 

To ensure cross-platform applicability, validation 

included multiple CT scanner models within the United 

Imaging product line, each with distinct physical 

specifications. These models were categorized as 

follows: (1) Model 1, featuring a standard field of view 

(SFOV) of 500 mm and an extended field of view (EFOV) 

reaching 820 mm; and (2) Model 2, with an SFOV of 630 

mm and an EFOV extending to 870 mm. Each model 

category comprises a series of CT scanners with 

identical physical parameters, enabling a 

comprehensive evaluation of Ultra EFOV’s performance 

across different imaging systems. 

Evaluation of HU Accuracy 

HU (Hounsfield Unit) values are a critical parameter in 

CT imaging, serving as a key metric for tissue density 

quantification, which is essential for radiotherapy dose 
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calculations, tumor analysis, and bone density 

assessments.  

To validate Ultra EFOV’s HU accuracy, experiments 

simulated various truncation scenarios by adjusting 

table height to replicate different degrees of field-of-

view limitations. The reference standard (HU_Ref) was 

obtained from SFOV-based imaging (position 1), serving 

as the ground truth for comparison. 

 

Figure 5: Phantom images under different truncation conditions. 

Figure 5 illustrates the phantom imaging results on a 

CT scanner with an 870 mm EFOV, highlighting four 

regions of interest (ROIs) across different FOV 

positions: Position 2 (630–700 mm FOV), Position 3 

(700–800 mm FOV), Position 4 (800–850 mm FOV), and 

Position 5 (850–870 mm FOV). 

The Multi-Energy CT Phantom Model 1472 (Figure 6) 

was used to analyze HU accuracy under different 

imaging conditions. This phantom consists of both an 

inner and an outer ring; however, for this study, only 

the inner ring was used to maintain experimental 

consistency and focus on HU accuracy and boundary 

precision. Since the primary objective was to assess 

EFOV performance rather than external shape 

variations, the inner ring provided a controlled 

geometric structure, reducing additional variables that 

could confound the results. Additionally, the high-

density inserts were randomly positioned within the 

phantom to simulate diverse material distributions and 

ensure robustness across different imaging scenarios. 

The positioning of the Gammex phantom in Model 2 is 

depicted in Figure 7, illustrating high-density material 

placement within the SFOV. This setup enabled a 

controlled evaluation of HU consistency across 

different truncation scenarios and served as the basis 

for subsequent boundary precision measurements. 

While this study focused on the inner ring 

configuration, future investigations could explore the 

effects of the outer ring on EFOV performance, further 

broadening the understanding of extended-field 

imaging across varying anatomical representations.  

 

Figure 6: Multi-Energy CT Phantom 

 

Figure 7  Schematic of Gammex phantom positioning in Model 2 

Quantitative Results 

HU deviations were measured at multiple positions 

using both water phantoms and Gammex phantoms. 

Table 1 summarizes the maximum HU deviations 

recorded for each scanner model. 

Table 1:  Maximum HU Deviation (Unit: HU) 

Model Water Phantom Gammex Phantom 

Model 1 2.24 14.3 

Model 2 3.4 5.5 
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For Model 1, the maximum HU deviation was 2.24 HU 

for the water phantom and 14.3 HU for the Gammex 

phantom. In Model 2, the maximum HU deviation was 

3.4 HU for the water phantom and 5.5 HU for the 

Gammex phantom. 

Assessment of Boundary 

Precision 

Boundary precision is a crucial factor in evaluating 

geometric distortions within EFOV regions, as it directly 

impacts anatomical integrity and morphological 

accuracy. This study analyzed 150 precisely distributed 

measurement points across the extended field, 

covering regions from SFOV edges to the EFOV’s 

maximum boundary. This high-density measurement 

strategy ensured a robust assessment of Ultra EFOV’s 

reconstruction accuracy under various truncation 

conditions. 

Quantitative Results 

Boundary accuracy was quantified by measuring the 

deviation between the reconstructed boundary and the 

ground truth across six truncation levels. The 

maximum boundary deviation for each scanner model 

and phantom type is summarized in Table 2. 

Table 2: Maximum Boundary Deviation (Unit: mm) 

Model Water Phantom Gammex Phantom 

Model 1 0.95 0.95 

Model 2 1.03 1.03 

For Model 1, the maximum boundary deviation was 

0.95 mm for the water phantom and 1.03 mm for the 

Gammex phantom. In Model 2, the maximum 

boundary deviation was 0.51 mm for the water 

phantom and 0.63 mm for the Gammex phantom. 

Discussion 

These results comprehensively validate Ultra EFOV’s 

robustness across multiple imaging dimensions, 

demonstrating high accuracy in both HU values and 

boundary precision. The findings highlight the 

algorithm’s effectiveness in EFOV while preserving 

anatomical fidelity, reinforcing its applicability in high-

precision CT imaging scenarios. 

Clinical Implications of HU Accuracy 

Ultra EFOV effectively controls HU deviations within ±20 

HU, ensuring compliance with clinical accuracy 

requirements for quantitative CT imaging. The deep 

learning-based model within Ultra EFOV compensates 

for HU drift at EFOV boundaries, improving the 

reconstruction of both soft tissue and bony structures. 

The predefined HU accuracy threshold was set 

conservatively to guarantee robustness across diverse 

clinical settings, and experimental validation confirms 

that observed deviations remain significantly below this 

threshold. 

A notable discrepancy in HU accuracy was observed 

between Model 1 (820 mm EFOV) and Model 2 (870 

mm EFOV), primarily due to differences in the 

placement of high-density structures within the 

Gammex phantom. In Model 1, bony structures were 

positioned closer to the X-ray source, fully within the 

EFOV, but lacking direct interaction with the SFOV. This 

configuration intensified beam hardening effects, 

leading to greater HU deviations. In contrast, Model 2 

positioned these structures within or adjacent to the 

SFOV, thereby reducing artifact severity and improving 

HU consistency. These findings highlight that HU 

accuracy is not solely algorithm-dependent but is also 

significantly influenced by the spatial distribution of 

high-density materials relative to the SFOV and EFOV 

regions. 

Despite these differences, even in the most challenging 

scenarios for Model 1, HU deviations remained below 

15 HU, which aligns with clinical expectations for 

extended-field imaging. The maximum observed HU 

deviation of 14.3 HU is within the acceptable clinical 

range, ensuring reliable tissue density quantification 

for radiotherapy planning, tumor assessment, and 

other quantitative imaging applications. These results 

further reinforce that HU accuracy remains within 

clinically acceptable limits, with deviations not 

exceeding 20 HU, even under extreme imaging 

conditions. 

Boundary Precision and Geometric Fidelity 

Ultra EFOV demonstrated high geometric accuracy, as 

validated by 150-point precision measurements. Unlike 

conventional EFOV methods, which typically rely on 

limited spatial sampling, Ultra EFOV’s comprehensive 

approach significantly enhances measurement 

reliability. The maximum observed boundary deviation 

remained below 1.04 mm, well within the predefined 

accuracy threshold. This high-fidelity reconstruction is 
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particularly valuable for applications requiring precise 

anatomical delineation, such as radiotherapy planning 

and orthopedic imaging. 

The variation in boundary accuracy between Model 1 

and Model 2 was further influenced by phantom 

composition and structure location relative to the 

SFOV. In Model 1, high-density structures positioned 

deeper within the EFOV and farther from the SFOV 

exhibited greater geometric distortion, likely due to 

beam hardening and metal-induced artifacts. This 

effect was less pronounced in Model 2, where the 

positioning of high-density structures within or 

adjacent to the SFOV enhanced reconstruction 

accuracy. 

Statistical analysis revealed no significant difference in 

boundary accuracy for water phantoms, suggesting 

consistent performance across scanner models in 

homogeneous soft-tissue-equivalent materials. 

However, in the Gammex phantom, Model 2 exhibited 

significantly lower boundary deviation than Model 1 

(p=0.038). This further supports the influence of 

structure positioning within the SFOV on geometric 

accuracy, particularly for high-density materials that 

exhibit strong attenuation effects. 

Cross-System Compatibility and Robustness 

Ultra EFOV is designed to ensure consistent image 

quality across different CT scanner models, 

accommodating a wide range of clinical conditions. 

Cross-platform validation confirmed that Ultra EFOV 

maintains stable HU values and geometric fidelity 

across various configurations, highlighting its strong 

device-agnostic robustness. 

Through extensive multi-system validation, Ultra EFOV 

has demonstrated reliable performance across diverse 

clinical applications, including extended-field 

diagnostics, radiotherapy simulation, and high-

precision anatomical imaging. These findings establish 

Ultra EFOV as a robust, clinically viable solution for 

overcoming SFOV limitations, ensuring accurate 

extended-field imaging in routine diagnostics and 

advanced therapeutic applications.
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Clinical Applications Evidence 

The clinical validation of the Ultra EFOV algorithm 

demonstrates its significant advantages in enhancing 

CT image reconstruction quality, reducing geometric 

distortions, optimizing HU accuracy, and minimizing 

artifact interference. Ultra EFOV’s enhancements 

extend beyond image quality improvements, offering 

clinically meaningful benefits across radiotherapy 

planning and orthopedic assessments. With boundary 

deviations consistently below 0.32 mm, the algorithm 

ensures precise tumor delineation, improves dose 

calculation reliability, and enables accurate pre-surgical 

anatomical mapping. To further illustrate its clinical 

utility, we analyze several typical patient cases that 

highlight Ultra EFOV’s performance in various imaging 

scenarios.

 

 

Figure 8 presents three patient cases: 
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(a) and (b): A large-body patient (height: 190 cm, weight: 102 kg, BMI: 28.25), scanned with an 870 mm field of view using both conventional EFOV 

and Ultra EFOV reconstructions. 

(c) and (d): A second patient (height: 188 cm, weight: 110 kg, BMI: 31.12), also scanned within an 870 mm EFOV, reconstructed using both 

conventional EFOV and Ultra EFOV algorithms. 

(e) and (f): A third patient, where arm elevation resulted in anatomy extending beyond the standard field of view, necessitating EFOV-based 

reconstruction.

Precision in HU Accuracy: Enhancing Reliability of Quantitative 
Imaging 

HU accuracy is critical in clinical CT applications, 

particularly in quantitative assessments, such as tumor 

treatment planning, bone density measurements, and 

fat composition analysis. By integrating deep learning 

and physics-based modeling, Ultra EFOV achieves 

highly precise HU corrections within the extended field, 

ensuring consistent tissue density representation with 

SFOV data. 

In Figure 8 (a) and (b), the first patient’s anatomy 

extends beyond the 630 mm SFOV. Compared to 

conventional EFOV, Ultra EFOV reconstruction 

demonstrates more stable HU values in the extended 

region, significantly reducing deviations. This precise 

HU calibration not only improves image visualization 

but also provides reliable data for subsequent dose 

calculations and tissue density analyses in radiation 

therapy and other quantitative imaging applications. 

Accurate Anatomical Reconstruction: Reducing Image Distortions 

Geometric distortions can compromise anatomical 

identification, reducing diagnostic accuracy. This issue 

is particularly problematic in EFOV regions, where 

conventional EFOV algorithms, constrained by limited 

projection extrapolation accuracy, can introduce 

structural deformations that misrepresent the true 

anatomical morphology. 

Ultra EFOV effectively preserves anatomical continuity 

by enhancing contour consistency and geometric 

accuracy. In Figure 8 (c) and (d), the second patient, 

scanned within an 870 mm EFOV, demonstrates how 

Ultra EFOV more accurately reconstructs the body’s 

outer contour and internal structures, compared to 

conventional EFOV. By eliminating common geometric 

distortions, Ultra EFOV improves precision in 

radiotherapy planning, orthopedic surgery assessment, 

and other high-accuracy imaging applications. 

Artifact Reduction: Enhancing Image Coherence for Stable Image 
Quality 

Truncation artifacts are a well-known issue in 

extended-field CT imaging, especially in large-body 

patients, non-standard positioning, or inhomogeneous 

tissue structures. These artifacts can obscure key 

anatomical structures, potentially affecting clinical 

decision-making. 

Ultra EFOV effectively minimizes truncation artifacts by 

employing an intelligent projection data weighting 

strategy. In Figure 8 (e) and (f), where the patient’s 

elevated arms extended beyond the SFOV, 

conventional EFOV reconstruction produced visible 

artifacts, complicating anatomical interpretation. In 

contrast, Ultra EFOV leveraged SFOV-based photon 

attenuation learning to accurately correct the 

extended-region data, resulting in clearer, more natural 

images and helping clinicians receive more realistic 

anatomical information.
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Multi-Scenario Adaptability: Meeting Diverse Clinical Needs 

Ultra EFOV is not limited to radiotherapy simulation but 

is also widely applicable in general diagnostic CT, 

including chest and abdominal imaging, and orthopedic 

assessments. Its high-precision extended field 

reconstruction capability allows it to maintain stable 

image quality across different scanner models, 

regardless of whether operating on 500 mm SFOV 

(expanded to 820 mm EFOV) or 630 mm SFOV 

(expanded to 870 mm EFOV). 

Furthermore, Ultra EFOV’s cross-device adaptability has 

been validated in multiple real-world clinical cases, 

further reinforcing its robustness and broad clinical 

applicability. Whether in diagnostic CT or radiation 

therapy planning, this algorithm effectively enhances 

image quality within extended fields, providing 

clinicians with clearer, more accurate imaging data for 

improved clinical decision-making.
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 Conclusion 

Ultra EFOV represents a significant advancement in 

extended-field CT imaging, effectively overcoming 

longstanding challenges, including geometric 

distortions, HU inaccuracies, and truncation artifacts. 

Its high-precision reconstruction capability has led to 

remarkable improvements in image quality across the 

extended field, achieving boundary accuracy within 

±1.5 mm and HU deviations controlled within ±20 HU. 

These technical advancements not only enhance 

anatomical continuity but also ensure the reliability of 

quantitative analysis within the EFOV region, 

establishing a solid foundation for high-precision 

medical imaging. 

Clinically, Ultra EFOV has demonstrated exceptional 

adaptability across various scanner models and 

complex patient cases. Its stable imaging performance 

makes it highly applicable in radiotherapy planning, 

orthopedic imaging, and other medical fields requiring 

precise anatomical visualization. Particularly in 

radiotherapy simulation, Ultra EFOV provides highly 

accurate dose calculations, offering enhanced imaging 

support for precision radiotherapy. 

As medical imaging technology continues to evolve, the 

application scope of Ultra EFOV is expected to expand 

further, addressing a broader range of advanced 

diagnostic needs. Future optimizations will focus on 

more efficient computational architectures, expanded 

imaging datasets, and enhanced AI-driven image 

refinement techniques, ensuring that Ultra EFOV 

continuously meets the growing demands of clinical 

imaging. Ultra EFOV marks a transformative 

advancement in extended-field CT imaging, bridging 

the gap between deep learning and physics-based 

reconstruction. By delivering unprecedented 

anatomical accuracy, the algorithm not only enhances 

diagnostic precision but also establishes a foundation 

for next-generation AI-driven medical imaging 

innovations.
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