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Introduction

Cardiovascular diseases remain a paramount concern 

in global clinical practice, with their accurate 

assessment and diagnosis heavily reliant on high-

quality cardiac imaging modalities. Computed 

tomography (CT), as the cornerstone of non-invasive 

cardiac evaluation, provides exceptional visualization of 

cardiac anatomy and coronary arteries. However, 

achieving optimal radiation dose reduction while 

maintaining diagnostic efficacy under the ALARA (As 

Low As Reasonably Achievable) principle persists as a 

critical challenge in cardiac CT imaging. 

United Imaging Healthcare’s (UIH) proprietary 

CardioBoost algorithm represents a cardiac-optimized 

deep learning reconstruction breakthrough. Leveraging 

a three-dimensional neural network architecture 

trained on multimillion datasets covering dedicated 

optimization for coronary stents, plaques, and 

microvascular structures, this innovative solution 

overcomes conventional cardiac imaging limitations. 

Integrated into the reconstruction pipeline, 

CardioBoost enables simultaneous achievement of 

noise suppression, enhanced low-contrast detectability 

(LCD), and preserved spatial resolution under low-dose 

conditions, establishing new benchmarks for cardiac CT 

image quality. 

This technical whitepaper systematically reviews the 

evolution of cardiac reconstruction algorithms, 

provides in-depth analysis of CardioBoost's 

technological innovations in low-dose denoising and 

LCD enhancement, and demonstrates its clinical value 

through phantom validation studies and real-world 

applications.
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Cardiac CT Image Reconstruction

Reconstruction algorithms play a pivotal role in 

enhancing CT image quality. Over decades, significant 

research efforts have been dedicated to advancing 

cardiac CT reconstruction methodologies, with the 

ultimate goal of obtaining diagnostically superior 

cardiac images while adhering to stringent low-dose 

scanning protocols.

Challenges in Cardiac Reconstruction 

CT cardiac imaging is the most challenging 

clinical application of CT technology. Its technical 

difficulties are mainly reflected in two aspects: it 

demands extremely high temporal resolution to 

overcome motion artifacts caused by the rapid 

heartbeat, and it requires accurate display of the 

delicate structures of the cardiovascular system, 

as the morphological characteristics of lesions 

are crucial for clinical diagnosis.  

At present, the technology faces a dilemma. 

Shortening the scanning time is the main way to 

improve temporal resolution when the 

mechanical performance limits the rotation 

speed of the gantry. However, this reduces the 

effective data volume, leading to a marked 

increase in image noise, which is unfavorable for 

presenting the delicate structures of the heart. To 

suppress noise interference, existing solutions 

often require a significant increase in radiation 

dose. Yet, the increase in dose is not 

proportional to the increase in effective data 

volume.  

Therefore, developing a new reconstruction 

algorithm that can simultaneously reduce image 

noise and radiation dose while maintaining 

spatial resolution has become the core research 

focus in cardiac CT imaging.

Algorithms for Cardiac Image Reconstruction

To obtain high - quality clinical CT cardiac images, 

experts have continuously explored and proposed 

various image reconstruction algorithms to address 

these challenges. 

The filtered back projection (FBP) is a basic image 

reconstruction algorithm and cannot resolve the 

conflict between image noise and spatial resolution [1]. 

With FBP reconstruction, using a lower frequency 

kernel and thicker slice thickness can help reduce 

image noise, but at the expense of decreased spatial 

resolution. Unfortunately, the aforementioned 

methods' adverse effects in cardiac imaging are 

unacceptable. 

Hybrid iterative reconstruction (HIR) is based on FBP 

technology, using iterative de-noising in both the 

projection and image domains to reduce streak 

artifacts and image noise [2], thus enhancing cardiac 

imaging. However, due to FBP's inherent properties, 

the benefits of HIR are limited as the dose decreases. 

Moreover, a high level of iterative weighting often 

results in "plastic" or "blotchy" images, which could 

negatively impact cardiac image quality and diagnostic 

accuracy [3]. 

Model - based iterative reconstruction (MBIR) 

addresses previous - generation algorithm limitations 

by incorporating complex system models and multiple 

iterations [1,5]. This fundamentally eliminates data noise 

and benefits high - quality cardiac imaging. However, it 
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has a huge computation workload, taking too long for 

image reconstruction. Furthermore, MBIR employing 

heavy iterative weighting can generate 'plastic' or 

'blotchy' artifacts in reconstructed images [3] and fails to 

meet clinical cardiac imaging needs. 

Recently, deep learning technology has been 

increasingly utilized and has demonstrated its potential 

in various application fields, including medical imaging. 

Deep learning is an end-to-end data-driven method 

that uses a large amount of data to train neural 

networks, enabling them to automatically learn 

patterns and rules of data [7,8]. In recent years, deep 

learning has demonstrated its capabilities in CT 

imaging reconstruction for noise and artifact reduction, 

particularly in cardiac imaging. By training with 

numerous typical clinical images, the deep learning-

based CT image reconstruction method can suppress 

noise while preserving the natural noise texture. 

Moreover, by specifically training on clinical images 

with coronary stents, calcified plaques, and other 

special features in CT cardiac imaging, the algorithm 

can better focus on these scenarios, improving image 

quality. 

UIH has consistently focused on the development and 

application of cutting-edge technologies to break 

through the bottleneck of traditional CT image 

reconstruction methods. Inspired by the deep learning 

technology, UIH presents a deep learning-based CT 

images reconstruction method — CardioBoost.
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CardioBoost: Excellent Deep Learning 

Reconstruction Engine

UIH has consistently emphasized the development and 

application of cutting-edge technologies. Driven by 

research and development in deep learning 

technology, UIH has introduced CardioBoost to achieve 

high-quality reconstructed images, particularly in low-

dose scans. With millions of diverse data-sets and a 

specialized network design, CardioBoost facilitates 

efficient workflow in a wide range of clinical scenarios. 

Precise Training Process of CardioBoost

The workflow of the CardioBoost proposed by UIH is 

illustrated in Figure 1. Two data-sets were comprised of 

a normal dose data-set and the simulated low dose 

data-set. Then, the deep learning network is trained to 

extract semantic information from images to 

reconstruct high-quality images, especially in low-dose 

scans. Finally, the trained deep learning network of 

CardioBoost can be easily integrated into the routine 

clinical workflow. 

During each training cycle, all simulated low dose 

images are randomly shuffled and input to the 

network. A dedicated loss function quantitatively 

measures the pixel-wise discrepancy between the 

network's output and the ground truth clean image. 

This error metric drives the optimization process 

through backpropagation with adaptive gradient 

descent, systematically adjusting network parameters 

to minimize reconstruction errors. Millions of 

parameters in the deep learning network are tuned 

through back propagation, reducing the difference 

between the network output and normal dose images.  

Then, a large amount of real low-dose data-set not 

used in training is applied to validate the algorithm, 

ensuring its robustness and accuracy.

 

 

[Figure 1] The training process of the CardioBoost

Millions Various Data-sets for Driving CardioBoost

Data provides rich information and features, aiding 

deep learning models in learning more complex 

patterns and relationships. Sufficient data is essential 

for the model to achieve better universality, 

robustness, and subsequently, higher accuracy. 
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The training data-set for CardioBoost includes 

approximately millions pairs of normal dose images 

and simulated low dose images. Based on the normal 

dose data-set, a low dose simulation algorithm is 

applied to create the corresponding low dose data-set. 

As described in references[9,10], the low dose simulation 

algorithm considers noise produced by low dose tube 

current, including photon noise and electronic noise. 

By utilizing the low dose simulation, a massive training 

data-set is generated without scanning the same 

patient twice with normal dose and low dose 

respectively. Additionally, the mismatch of paired 

training data can be entirely avoided. 

CardioBoost's dataset uses tissue - recognition 

classification, identifying hundreds of tissues across the 

chest and abdomen, including plaques and heart 

valves, to boost model robustness and tissue contrast. 

Notably, to cater to diverse cardiac clinical scenarios 

and maintain universality, the dataset employs 

targeted augmentation strategies specializing in stents, 

plaques, and small vessels, thereby improving the 

algorithm's performance in these key cardiac scanning 

scenarios.

Specialized Deep Learning Network Design

CT provides three - dimensional (3D) cardiac imaging 

data. Cardiac image analysis based on volumetric data 

offers more comprehensive and accurate diagnostic 

information for clinical practice. CardioBoost uses 3D 

data processing to learn the entire cardiac CT dataset 

and understand the continuous 3D - spatial 

representation of anatomical structures. Consequently, 

CardioBoost ensures the uniformity and consistency of 

3D images while effectively suppressing noise in axial 

images. 

The extraction of semantic information at different 

levels is crucial for image reconstruction. To prevent 

performance degradation caused by information loss 

as network depth increases, CardioBoost utilizes a 

dense connection method with varying depth 

information. This approach effectively prevents 

information loss, thereby completing more accurate 

reconstruction tasks by combining more information. 
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Phantom Validation 

Phantom studies were performed to objectively assess 

CardioBoost’s performance in noise reduction, LCD 

improvement and high spatial resolution 

enhancement, particularly under lower radiation dose.

Excellent Performance in Noise Reduction

A 320mm diameter water phantom was scanned to 

evaluate CardioBoost’s performance in noise reduction. 

The water phantom was scanned with 120 kV at various 

dose levels from 10 mAs up to 100mAs. Phantom 

images under different dose levels were reconstructed 

by FBP, KARL (a hybrid iterative reconstruction method 

developed by UIH), and CardioBoost. 

Noise level is defined as the standard deviations (STD) 

of the Hounsfield Unit (HU) values within the region-of-

interest (ROI). As illustrated in Figure 2, CardioBoost 

demonstrates the best noise reduction capability 

compared with FBP and KARL at both dose levels. 

 

[Figure 2] The reconstructed images and STD values of the 320 mm 

water phantom under different reconstruction methods and dose 

levels. 

Additionally, images reconstructed by three different 

methods were used to calculate the image noise in the 

central ROI at each dose level. Figure 3 presents the 

image noise with FBP, KARL and CardioBoost. From the 

noise curves we observe that CardioBoost exhibits the 

minimal noise level compared with FBP at all dose 

levels, particularly at low dose levels.  

 

[Figure 3] Curves of noise with dose for different reconstruction 

method. 
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[Figure 4] Curves of noise power spectrum NPS for different reconstruction method. 

The basic principle of noise power spectrum (NPS) 

measurement is based on Fourier transform, which 

transforms signals to the frequency domain for 

measurement and analysis. It can describe the noise 

frequency variations in reconstructed data and fully 

considers the effects of factors such as 

reconstruction, filtering, and post-processing on 

noise correlation. This makes it a relatively 

comprehensive method for noise evaluation. 

From the absolute NPS curve, CardioBoost noise 

enhanced when scanning dose decreased but better 

than FBP. From the normalized NPS curve, 

CardioBoost image noise peak are similar when 

scanning dose varied and the peak of CardioBoost 

NPS curve is similar as the peak of FBP.  

From the noise spectrum power curves of Figure 4, 

the peak of CardioBoost NPS is similar as the peak of 

FBP which showed that noise pattern of CardioBoost 

is similar to FBP.

 

LCD Improvement under Low Dose Imaging

LCD is often regarded as a critical indicator of image 

quality, especially under low dose imaging, as it reflects 

the detectability of low contrast objects, which may 

represent early-stage lesions in clinical scenarios. 

The quantitative evaluation of LCD improvement under 

low dose is based on task-based method with a model 

observer [11], as recommended by the Joint MITA-FDA 

CT Image Quality Task Group.  

We used a model observer LCD evaluation method [11] 

to evaluate the capability of CardioBoost for dose 

reduction and LCD improvement. A CCT189 MITA CT IQ 

low contrast phantom (The Phantom Laboratory, 

Salem, NY) was used for evaluation, as shown in Figure 

5. It contained four rods with different diameters and 

contrasts. The phantom was scanned with 120 kVp at 

different dose levels (CTDIvol = 4.16/2.50 mGy). Images 

were reconstructed using FBP and CardioBoost. The 

Channelized Hotelling Observer (CHO) [12] was used to 

assess the LCD. The Receiver Operating Characteristic 

(ROC) curves and the Area Under the ROC Curve (AUC) 

values were calculated to compare the LCD 

performance between FBP and CardioBoost.
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[Figure 5] CCT189 MITA CT IQ low contrast phantom, which contains 4 rods with different diameter and contrast. 

 

 

[Figure 6] The ROC curves and AUC values of FBP and CardioBoost at the same dose. Higher true positive fractions and AUC values indicate better 

LCD performance.

From the ROC curves and AUC values shown in figure 6, 

it is apparent that CardioBoost shows better LCD 

performance than FBP at the same dose. 

High Spatial Resolution Improvement under Low dose 

Imaging
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To assess the spatial resolution properties of 

CardioBoost results, we scanned the Catphan 700 

phantom with 100 kV at 100 mAs, namely 9.968 mGy 

CTDIvol dose. The phantom images were reconstructed 

using FBP and CardioBoost in 512x512 matrices. The 

Modulation Transfer Function(MTF) of the 

reconstructed images in Figure 7 demonstrate that 

CardioBoost exhibits higher spatial resolution and less 

noise compared with FBP under the same scanning 

conditions.

 

[Figure 7]. MTF curves for different reconstruction method.
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Clinical Applications Evidence 

The following clinical cases subjectively evaluate 

CardioBoost’s effectiveness in clinical applications, 

demonstrating its ability to produce high-quality CT 

images

CardioBoost in Cardiac Coronary Stents 

Figure 8 illustrates a case where KARL and the 

proposed CardioBoost technology are utilized for 

cardiac scanning. The patient was scanned at 100 kV, 

102 mAs, with CTDIvol = 8.00 mGy and effective dose 

1.57 mSv. 

CardioBoost significantly reduces image noise and 

enhances image contrast. In this clinical case of 

congenital bicuspid aortic valve and pseudoaneurysm, 

the images reconstructed by CardioBoost show clearer 

valve details. Compared to KARL, CardioBoost also 

provides a clearer display of the lumen within the stent.

[Figure 8] Cardiac images reconstructed using KARL and CardioBoost. Compared with the traditional KARL, CardioBoost clearly shows the valve and 

the lumen within the stent. 
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Figure 9 shows another example of a heart stent scan 

using KARL and CardioBoost techniques. The patient 

was scanned at 100 kV, 635 mAs, with CTDIvol = 13.1 

mGy and effective dose 4.05 mSv. 

Compared with KARL, CardioBoost reconstructed 

images had lower noise, higher signal-to-noise ratio 

(SNR) in lumen, and better contrast, which could clearly 

show the hyperplasia of stent intima. 

 

[Figure 9] Cardiac images reconstructed using KARL and CardioBoost. Compared with the traditional KARL, CardioBoost clearly shows hyperplasia 

of the intima of the coronary stent.  
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CardioBoost in Cardiac Coronary Plaques 

Figure 10 presents a cardiac calcification plaque 

scanning case using KARL and CardioBoost. The patient 

was scanned at 120 kV, 89 mAs, with CTDIvol = 16.01 

mGy and effective dose 3.85 mSv. 

Apparently, CardioBoost can reduce image noise and 

enhance image contrast. Compared with KARL images, 

CardioBoost images exhibit a higher SNR, and the 

boundaries of mixed plaques, particularly soft plaques, 

are more clearly defined, thus boosting diagnostic 

confidence.

[Figure 10] Cardiac images reconstructed with KARL and CardioBoost. Compared with traditional KARL, CardioBoost has a better SNR and shows 

clearer mixed plaque boundaries.
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Figure 11 presents a cardiac scanning case with soft 

plaques. The patient was scanned at 100 kV, 133 mAs, 

with CTDIvol = 12.61 mGy and effective dose 2.47 mSv. 

It’s apparent that CardioBoost significantly reduces 

image noise. Additionally, the contrast of coronary soft 

plaque is more obvious in images reconstructed with 

CardioBoost. 

[Figure 11] Cardiac images reconstructed with KARL, CardioBoost. In comparison to the traditional KARL, CardioBoost provides clearer display of 

soft plaques. 
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Figure 12 presents a cardiac non-calcified plaque 

scanning case. The patient was scanned at 100 kV, 673 

mAs, with CTDIvol = 12.09 mGy and effective dose 3.54 

mSv. 

CardioBoost significantly reduces image noise, 

providing clear vessel boundaries, high imaging 

contrast, and clear display of Left Anterior Descending 

(LAD) non-calcified plaques.

 

[Figure 12] Cardiac images reconstructed with KARL, CardioBoost. In comparison to the traditional KARL, CardioBoost significantly reduces image 

noise, providing clear vessel boundaries, high imaging contrast. 
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CardioBoost in Low Dose Coronary Imaging

Figure 13 presents a low dose cardiac scanning case. 

The patient was scanned at 80 kV, 148 mAs, with 

CTDIvol = 7.81 mGy and effective dose 1.53 mSv. 

This shows CardioBoost can still boost imaging contrast 

at low doses, with CPR images displaying clearer blood 

vessel boundaries and more distinct contrast between 

mixed plaques and the vessel lumen.  

[Figure 13] Cardiac images reconstructed with KARL, CardioBoost. In comparison to the traditional KARL, CardioBoost still provides better imaging 

contrast at low doses.
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CardioBoost in Myocardial Perfusion

Figure 14 presents a myocardial perfusion examination 

utilizing KARL and CardioBoost. The patient was 

scanned at 70 kV, 177 mAs, with CTDIvol = 19.7 mGy 

and effective dose 3.86 mSv. 

CardioBoost effectively reduces radiation dose while 

significantly lowering image noise and enhancing tissue 

contrast, resulting in diagnostically acceptable image 

quality.

 

[Figure 14] Cardiac images reconstructed with KARL, CardioBoost. In comparison to the traditional KARL, CardioBoost significantly lowering image 

noise and enhancing tissue contrast. 
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Conclusion

CardioBoost, based on a 3D deep learning neural 

network architecture, is meticulously designed using 

millions of datasets to create a superior model with 

greater universality, robustness, and accuracy. 

Objective results from phantom validation and 

subjective results from clinical evidence show that, 

compared to the traditional HIR method, CardioBoost 

can obtain high - quality cardiac scanning images, 

significantly reduce image noise, and acquire high - 

resolution images at low doses. It also delivers 

outstanding performance in stents and plaques.  
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