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Introduction 

 

 

United Imaging Healthcare (UIH) has pioneered 

groundbreaking technology in computed tomography 

image reconstruction that seamlessly integrates the 

benefits of cutting-edge deep learning technology – 

a subset of Artificial Intelligence (AI) – with the power 

of model-based iterative reconstruction (MBIR). The 

Artificial-Intelligence Iterative Reconstruction (AIIR) 

technology stands out as the most advanced CT 

image reconstruction architecture which allows for the 

delivery of superior image quality. 

Reconstruction by AIIR involves an optimization 

process similar to Model-Based Iterative 

Reconstruction (MBIR), from the projection domain 

to the image domain. Throughout the iterative loop 

of forward and backward projections, AIIR maintains 

factors for modeling optics, noise, anatomy, and 

physics statistics. It also incorporates deep learning 

based de-noising technology to replace the role of 

traditional regularization of MBIR in the optimization 

reconstruction process. UIH’s AIIR can reduce image 

noise, suppress streak and cone-beam artifacts, 

increase spatial resolution and improve low contrast 

detectability. AIIR allows for the reduction of radiation 

dose required for a diagnostic CT image while 

maintaining image quality. 

In this white paper, we will first give a brief introduction 

of the characteristics and challenges of traditional CT 

reconstruction technologies. Next, the design of AIIR 

will be explained, including the data training of the 

deep learning de-noising engine and workflow. Then, 

the core advantages of AIIR in clinical applications will 

be introduced. Finally, the reconstruction performance 

of AIIR will be presented in both phantom test and 

clinical cases. 

Challenges of Conventional Filtered Back 

Projection, Hybrid Iterative, and Model-Based 

Iterative Reconstruction 

Historically, filtered back projection (FBP) has been the 

preferred CT reconstruction algorithm. However, with a 

lower radiation dose, the FBP results contain higher noise. 

As a result, the image quality and capability to provide 

accurate diagnosis are degraded. In addition, because 

the anatomy of the human body is generally elliptical in 

the cross-section (especially in pelvis and shoulder), the 

attenuation of x-ray at different view angles varies. With 

a constant exposure strength, significant streak artifacts 

along the lateral direction are often distinct in FBP images. 

Moreover, reconstruction with FBP is a one-way 

approximation process, so some artifacts due to partial 

data insufficiency, like cone-beam artifacts cannot be 

avoided. 

To reduce the image noise and artifact in the traditional 

FBP reconstruction, a hybrid iterative reconstruction 

method was introduced. This method is based on the 

FBP architecture, while applying iterative noise reduction 

algorithms in both the projection domain and the image 

domain to reduce the streak artifacts and the image noise. 

However, due to the intrinsic property of FBP, the ability 

to reduce noise, streak artifacts,and core-beam would be 

limited with further dose reduction. 

To overcome the limitation, the model-based iterative 

reconstruction (MBIR) was proposed. MBIR is a fully 

iterative reconstruction technique that can incorporate 

a sophisticated model to describe the data acquisition 

process and a general prior term to regularize the final 

reconstruction. Images are reconstructed by minimizing 

an objective function that includes a data-fidelity term 

involving a system model and a statistical noise model, 

and a regularization term that stabilizes the image 

properties [1].  
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The system model can describe the nonlinear, 

polychromatic nature of the measured data set. The 

statistical noise model takes photon statistics and 

electronic noise into consideration. The prior term 

describes the general form or properties of the 

reconstructed images and provides tunable image quality 

trade-offs [2]. In combination, these models enable MBIR 

to break through the inherent limitations of the traditional 

FBP method and the hybrid iterative method, so that it 

can fundamentally eliminate the noise problem of the 

data [3], and retain the original high-frequency details 

of the image as much as possible while eliminating the 

high-frequency noise of the image. Moreover, with a 

well-defined prior, the missing sampling component with a 

cone-beam geometry can be approximated and the cone-

beam artifacts can be well suppressed. This ability is 

unique to MBIR methods compared with the iterative FBP 

methods. 

Despite the high potential in image quality improvement, 

the application of MBIR methods still has its challenges. 

First and foremost, the algorithm architecture complexity 

of MBIR is higher compared with FBP and hybrid iterative 

reconstruction methods. Specifically, the regularization 

is usually difficult to design and greatly depends on 

the experience of the developer. Secondly, different 

regularization strengths can lead to significant differences 

in image quality. With too high regularization strength, the 

MBIR images can have unnatural “plastic texture" and 

eliminate fine structures that may be crucial. Moreover, 

due to the combination of data-fidelity term and prior- 

term, MBIR reconstructions appear to be increasingly 

data-dependent. With the same regularization design 

and strength, the image quality strongly depends on 

the scan protocol, patient anatomy, and location of 

interests. In addition, compared with FBP and hybrid 

iterative reconstruction methods, MBIR methods have a 

slower reconstruction speed due to the complex iterative 

process that involves multiple forward and backward  

projection computations, limiting the availability for 

CT scanning in high patient volume settings. 

To develop a robust and fast MBIR method that 

can be deployed in the clinical routine, we 

propose an adaptive regularization term that 

eliminates the unnatural image texture and 

accelerates the overall reconstruction speed. 

Development of Deep Learning-Based 

Image Reconstruction 

Deep learning as a sub-category of AI technology, has 

been developing rapidly. Recently, researchers 

have incorporated deep learning technology into 

CT reconstruction and demonstrated impressive 

improvement in image quality as well as reconstruction 

speed [4-6]. This data-driven reconstruction method 

demonstrates exceptional noise reduction capabilities, 

effectively ushering in a new era of low-dose image 

reconstruction. The basic principle of a mainstream 

deep learning-based image de-noising approach is as 

follows: During the training process, pairs of low-dose 

images with compromised image quality and normal- 

dose images with high quality serve as inputs and 

output labels to train a deep neural network (DNN). 

The objective is to optimize the numerous parameters 

in the DNN. This optimized DNN is then used as a 

fixed model in the application process, where the 

network can process any low-dose images to reduce 

the noise while maintaining the fine structures. 

Now that this deep learning technology has reached 

a high level of maturity, the time is right to explore an 

innovative reconstruction technology that combines 

those latest advances with the advantages of MBIR. 
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AIIR: The World’s First CT Reconstruction Algorithm 

that Combines Deep Learning and MBIR 
 

The objectives behind designing high-performance CT 

reconstruction algorithms include obtaining high-quality 

CT images with lower noise, higher contrast resolution, 

higher spatial resolution, fewer artifacts, and more natural 

anatomical structures and noise texture, all while reducing 

the dose. 

After years of diligent research and development, UIH is 

proud to present AIIR. The world’s first CT reconstruction 

algorithm which combines deep learning technology and 

MBIR algorithm. Originating from a unique architecture, 

AIIR utilizes the advantages of both MBIR and deep 

learning technologies. Using the same iterative framework 

as a conventional MBIR method, AIIR adopts a realistic 

statistical CT forward model and compares the synthetic 

measurements based on the current image estimates with 

the measurements. Incorporating a pre-trained deep prior, 

AIIR inherits the good natural effect of deep learning de- 

noising network to further improve the image quality while 

maintaining the natural noise texture. AIIR is a breakthrough in 

CT reconstruction technology and one of the most advanced 

reconstruction technologies in the world (Figure 1). 

 

 
Figure 1. The Generations of CT Reconstruction Technology. 
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AIIR Overcomes the Limitation of MBIR 

 

 

The basic principle of the MBIR algorithm can be 

described using the following optimization problem:  
Equation 1: 

 𝑼∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝑼 (‖𝑨𝑼 − 𝒀‖𝑾
𝟐 + 𝜷𝑹(𝑼)) 

Equation 1 is the objective function that includes 

the data fidelity term ‖AU - Y ‖ 2 and the regularization 

term βR(U) [7]. 

The CT image is denoted with U and the line-integrals 

is denoted with Y; a well calibrated system matrix A, the 

relationship between the mean of the image U and the 

line-integrals Y can be modeled as Equation 2. 

Equation 2:  

𝑌̅ = 𝑨𝑈̅ 

The data fidelity term is derived as the marginal likelihood 

function presuming that the noisy line-integrals follow a 

Gaussian distribution with a covariance matrix W. 

In practice, the regularization term R(U) is difficult to 

design. The regularization term can be considered as a 

prior information about the image U. Since the specific 

type of regularization function R(U) is designed manually, 

it can only focus on very simple description of clinical 

image characteristics with a limited number of parameters 

to adapt. Due to the limitation in the conventional design 

mentioned above, the performance of the widely used 

norm-based regularization functions will result in 

unnatural image structures, such as plastic-looking 

appearances, usually more severe when the scan dose 

is lower. This is a major limitation of MBIR for clinical low 

dose CT applications.

 

Deep learning technology is a good solution to address 

the challenges of manual regularization design. UIH’s 

AIIR is a new perspective which replaces the handcraft 

regularization term with a data driven trained deep 

learning model. 

A deep-learning-based regularization function has two 

main advantages over conventional regularization based 

on norms. First and foremost, a deep learning network 

such as a CNN usually has millions of parameters. The 

enormous number of parameters, impossible to set 

manually in traditional regularization functions, provide the 

model with almost boundless potential to describe more 

complex characteristics of clinical images. Second, the 

deep learning-based regularization model was trained 

with high quality clinical images, accepted by radiologists 

as the training target or label. The model learned to 

differentiate the signal from noise and describe the image 

characteristics from itself. It has the power to describe the 

image characteristics with abstract features that cannot be 

pre-defined in the traditional MBIR regularization function. 

As a result, the trained network will provide images that 

directly match the quality requirements of the users. While 

solving the limitations of MBIR, deep learning also has 

the capability to reduce image noise, which can further 

improve the quality of the reconstructed images [10]. 
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The Workflow of AIIR 

 

 

The architecture of AIIR is based on the framework of 

MBIR, in which a deep learning de-noising engine is 

introduced as the regularization process to remove the 

limitation of conventional MBIR. 

As one core part of AIIR, the data-fidelity term considers 

multiple models to fully describe the system properties 

including a system optics model, a detector model and a 

quantum statistical model of each specific scan during 

data collection. At each iteration loop, the estimated 

images are transformed into projection data and 

compared with acquired projection data, then updated 

via forward and backward projection. During this process, 

detailed information from the raw projection data can be 

added to the image, so that the anatomic and pathological 

information can be preserved in the image. 

In addition to the data-fidelity term, the deep learning 

de-noising engine determines the reconstruction 

performance of AIIR. This is a data-driven method, and 

its performance largely depends on the training dataset. 

The training dataset of AIIR which contains millions of 

high-quality/low-dose image pairs is generated directly 

from the MBIR methods. This dataset encompasses 

a wide range of clinical scenarios, including multiple 

body parts, ages, genders, body types, diverse scan 

protocols, radiation dose levels, and typical diseases. 

The large number of cases in the training dataset ensures 

the network’s generalizability and robustness. Figure 2 

illustrates the training process of the deep learning de- 

noising engine. 

The diagram of the AIIR optimization algorithm is shown 

in Figure 3. In each iteration, the AIIR method first seeks to 

minimize the data-fidelity cost function, and then applies 

the deep learning de-noising engine to reduce the noise. 

The image quality improvement increases with more 

iterations where more detailed information is recovered 

while the noise is constantly suppressed by the de- 

noising engine. The iterative process is finished when the 

reconstructed image meets clinical requirements. 

Altogether with the advanced design concept mentioned 

above, the AIIR has demonstrated outstanding 

reconstructed image quality in many aspects such as noise 

reduction, excellent low-contrast detectability, ultra-high 

spatial resolution, and artifact-free image performances. 
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The Workflow of AIIR 

 

 
Figure 2. Deep Learning De-Noising Engine Training Process 

 

Deep Learning DeNoising Engine 

Back-Projection 

Forward-Projection 



TECHNICAL WHITE PAPER: AIIR - THE WORLD’S PIONEERING CT IMAGE RECONSTRUCTION TECHNOLOGY VERSION 2 

9 

 

 

 

 
The Workflow of AIIR 

 

 
Figure 3. AIIR Reconstruction Workflow 
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Excellent Performance in Noise Reduction 

 

 

Compared with the traditional FBP and hybrid 

iterative reconstruction, AIIR shows excellent noise 

reduction capability. This was first demonstrated with 

a water phantom test, where a water phantom of 320 

mm diameter was scanned with 120 kV at various 

dose levels from 10 mAs up to 400 mAs. We then 

reconstructed the images using FBP, Hybrid IR, and 

AIIR. The reconstructed images at a high dose level 

(400 mAs) and a low dose level (15 mAs) are shown 

in Figure 4. At both dose level, AIIR exhibits the best 

noise reduction capability compared with FBP or 

Hybrid IR. 

We further computed the noise magnitude in a centered 

ROI for the three different methods at each dose levels. 

Figure 5 summarizes the measured noise for the 

different reconstruction methods. From the noise curves 

we observe that the AIIR shows the minimal noise level 

compared to FBP or Hybrid IR over the range of 

radiation dose. This difference is more distinct at low 

dose levels, where AIIR can reduce the noise by up to 

90% compared with FBP. 

Figure 4. Reconstructed Images and STD Values 

of 320 mm Water Phantom Under Different 

Reconstruction Methods 

Especially at the15 mAs, which is the “limit” dose for the 

320 mm water phantom, the reconstructed image under 

AIIR still maintains the ultra-low noise. 

Figure 5. Curves of Noise with Dose for 

Different Reconstruction Methods 
 

The black, blue and red curves represent the noise levels of 

FBP, Hybrid IR and AIIR, respectively. 
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Ultra-low-dose Imaging and Low-contrast 

Detectability Improvement 
 

 

Radiation exposure remains a paramount consideration in 

the advancement of CT Technology. Indeed, every aspect 

of CT protocols-from scan strategy to reconstruction 

algorithms-plays a pivotal role in optimizing the balance 

between image quality and the potential risks of radiation. 

AIIR’s advanced framework helps reconstruct images at 

ultra-low doses and improve the low-contrast detectability 

(LCD) of images, outperforming the other clinically 

available reconstruction methods in ultra-low-dose 

imaging [11]. 

We used a model observer LCD evaluation method [12] to 

evaluate the capability of AIIR for dose reduction and LCD 

improvement. A CCT189 MITA CT IQ low contrast phantom 

(The Phantom Laboratory, Salem, NY) was used for 

evaluation. It contained four rods with different diameters 

and contrasts. The phantom was scanned with 120 kVp 

at different dose levels (CTDIvol = 6.40/0.64 mGy). Images 

were reconstructed using FBP and AIIR. The Channelized 

Hotelling Observer (CHO) [13] was used to assess the 

LCD. The Receiver Operating Characteristic (ROC) curves 

and the Area Under the ROC Curve (AUC) values were 

calculated to compare the LCD performance between FBP 

and AIIR. 

From the ROC curves and the AUC values shown in figure 

6, one can observe that the LCD performance of AIIR at 

ultra-low dose (1/10 of the normal dose) is better than FBP 

at the same dose level and comparable with FBP results at 

normal dose level. This indicates that AIIR can reduce the 

dose up to 90% compared with FBP at the same LCD. 

To further evaluate the performance of LCD, the Catphan 

700 phantom was scanned with the head protocol with 

120kV 350mAs 48mGy. Images were reconstructed with a 

slice thickness of 0.5 mm individually using FBP, Hybrid 

IR, and AIIR, shown in Figure 7. We can see that AIIR 

improves the LCD compared with FBP and Hybrid IR at 

the same dose level. 
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Ultra-low-dose Imaging and Low-contrast 

Detectability Improvement 
 

 
Figure 6. Evaluation of Dose Reduction and LCD Improvement Capability of AIIR. 
 

The ROC curves and AUC values of FBP at normal dose, FBP at low dose, and AIIR at low dose are shown in black, blue, 

and red, respectively. The higher true positive fraction and AUC value, the better the LCD performance. 
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Ultra-Low-Dose Imaging and Low-contrast 

Detectability Improvement 
 

 

Figure 7a. Catphan 700 Phantom Includes Low-Contrast Module with Different 

Supra-Slice and Subslice Contrast Targets 

 
 
 

 
Supra-Slice Target Diameters 

2.0 mm, 3.0 mm, 4.0 mm 

5.0 mm, 6.0 mm, 7.0 mm 

8.0 mm, 9.0 mm, 15.0 mm 

Supra-Slice Target Diameters 

3.0 mm, 5.0 mm, 7.0 mm, 9.0 mm 
 
 
 
 
 
 
 

 
Figure 7b. Reconstructed Images of Low-Contrast Module Using FBP, Hybrid IR, and AIIR 

 

 

120 kV 350 mAs 48 mGy 0.5mm Thickness 

 

FBP   
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More Details with Improved Ultra-High Spatial Resolution 

 

 

AIIR inherits the advantages of MBIR method and can 

reconstruct fine structures. For CT imaging at standard 

clinical dosage levels, the conventional FBP algorithm 

may not produce optimal results when imaging certain 

body parts with intricate and fine structures. AIIR 

improves spatial resolution and helps the clinicians to 

identify small lesions. 

 
Figure 8a. CT ACR 464 Phantom 

 

 
 

 

The CT ACR 464 phantom includes a high-spatial 

resolution module with eight high-contrast line-pair 

patterns of 4, 5, 6, 7, 8, 9, 10 and 12 line pairs per cm. 

To evaluate the spatial resolution properties of AIIR results, 

we scanned a CT ACR 464 phantom with 120 kV at 

300 mAs, namely 23.45 mGy CTDI dose. The phantom 

images were reconstructed using FBP and AIIR in 512x512 

matrices. The reconstructed images of the line-pair 

phantom shown in Figure 8 demonstrate that AIIR exhibits 

higher spatial resolution and less noise compared with FBP 

under the same scanning conditions. 

Figure 8b. 

120 kV 300 mAs 23.45 mGy 200 FoV 512x512 Matrix 
 

FPB 
 

AIIR 
 

The reconstructed images of CT ACR 464 phantom using 

FBP and AIIR. One can observe that the line pairs in AIIR 

reconstructed images are of higher contrast and more 

differentiable than those in FBP reconstructed images. 
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Artifact-Free Performance on Streak Artifact Suppression 

 

 

Streak artifacts are one of the major challenges in high- 

quality CT image reconstruction, especially in low-dose 

scans. Because of ultra-high attenuation along the long- 

axis bone structures, such as the lateral view in shoulder, 

the measured signals are low and overwhelmed with 

the noise. This will result in severe directional streak 

artifacts in the FBP reconstructed CT images (Figure 9a). 

Hybrid iterative reconstruction methods can somewhat 

reduce the streak artifacts (Figure 9b), but it is difficult to 

eliminate all of them. 

The issue of streak artifacts can be effectively addressed 

using AIIR. This is the benefit of the unique AIIR algorithm 

architecture that combines both the backbone of MBIR 

and the flesh of data-driven deep-learning technology. 

The statistical characteristics in raw data, like the 

inhomogeneity of noise distribution mentioned above, can 

be gradually filtered out throughout the iterative process 

of reconstructions, which results in almost complete 

suppression of the streak artifacts in images (Figure 9c). 

In some cases, the patients may not be able to lift their 

arms and place their arms next to the body. This position 

can lead to severe streak artifacts in abdominal scans. 

Figure 10 shows that the AIIR images can properly deal 

with this class of clinical cases with nearly “streak-artifact- 

free” performance. 

 
Figure 9. Adult Shoulder CT Images Using Different Reconstruction Methods 

 

 

Scan Parameters: 100 kV, CTDIvol=5.71 mGy, 

pitch=1, slice thickness=1.0 mm, helical scan type 

Compared with conventional FBP and Hybrid IR 

reconstructed CT images, AIIR image shows the advantage 

of "streak-artifact-free imaging". 
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Artifact-Free Performance on Streak Artifact Suppression 

 

 
Figure 10. Adult Abdomen CT Images with Arms Aside Using Different Reconstruction Methods 

 
 

Scan Parameters: 120 kV, CTDIvol=0.67 mGy, 

pitch=1.37, slice thickness=0.5 mm, helical scan type 

The images reconstructed by FBP show severe 

streak artifacts. Hybrid IR can reduce the streak 

artifact, yet not enough for diagnostic image quality. 

AIIR images show the best performance of streak 

artifact reduction and highest signal-to-noise ratio 

(SNR) in the image. 
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Under-sampling Solution with Cone-beam Artifact Suppression 

 

 

Wide-coverage CT plays an important role in clinical 

diagnosis. However, such a detector covers a wider 

cone angle and cannot collect data outside the cone 

angle. This will result in cone-beam artifacts while the 

axial spatial resolution decreases from the central 

plane to the edge. With a data-regularized MBIR, AIIR 

can reconstruct images with much less cone-beam 

artifacts than FBP or hybrid iterative images. 

The reconstructed images of the compact-disc (CD) 

phantom shown in Figure 11. The CDs phantom is 

commonly used as the test for cone-beam artifacts in 

the industry. If the reconstruction algorithm lacks the 

ability to eliminate cone-beam artifacts, the 

reconstructed image would have conspicuous artifacts. 

In FBP and Hybrid IR images, the CD cross-sections 

are more and more distorted moving aside from the 

center plane. The cone-beam artifacts can be reduced 

in AIIR image, and the coronal image clearly show 

parallel bars representing the cross-sections of the 

CDs. 

Figure 12 summarizes the cone-beam artifacts 

suppression in head scans. The cone-beam artifacts 

appear at the skull base in both FBP images and Hybrid 

IR images but are completely suppressed in AIIR images. 

In addition, the AIIR images show less noise, higher LCD, 

and better contrast between grey and white matter 

Figure 11a.The Schematic Diagram of a CDs 

Phantom 

 

The phantom is made of a regular set of CDs stacked 

with robber washers to create air gaps between 

adjacent CDs.

Figure 11b.  

120 kV 350 mAs 49.05 mGy 0.5mm Thickness 

 
 

The reconstructed images of CDs phantom using FBP, Hybrid IR and AIIR respectively. Compared with FBP and Hybrid 

IR image, the cone-beam artifacts can be reduced in AIIR image. 

FBP Hybrid IR AIIR 
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Under-sampling Solution with Cone-beam Artifact Suppression 

 

 
Figure 12. Adult Head CT Images Using Different Reconstruction Methods 

 

Scan Parameters: 120 kV, CTDIvol=48.78 mGy, slice thickness=0.5 mm, axial scan type 

From the top to the bottom show the axial, coronal, and sagittal slices of the reconstructed volumes. From 

the left to the right show the results of (a) FBP, (b) Hybrid IR, and (c) AIIR, respectively. The FBP images 

show cone-beam artifacts at the skull base. The Hybrid IR can reduce the cone-beam artifact. AIIR images 

show the best performance of cone-beam artifact suppression. 



TECHNICAL WHITE PAPER: AIIR - THE WORLD’S PIONEERING CT IMAGE RECONSTRUCTION TECHNOLOGY VERSION 2 

19 

 

 

 

 
Clinical Applications Evidence 

 

 

To thoroughly assess the effectiveness of the AIIR 

algorithm in clinical applications, a diverse range of 

clinical cases have been utilized to showcase its 

advantages in producing high-quality CT images. 

Figure 13 shows a clinical images of an adult chest 

scan using ultra-low dose (CTDIvol=0.21mGy). 

According to the ACR 2020 Dose Index Registry (DIR) 

Executive Summary report [14], 98% dose reduction of 

a chest scan is realized when compared with the 

average dose of CTDIvol 12~13 mGy.In this ultra-low 

dose scanning scenario, the images are reconstructed by 

FBP, Hybrid IR, and AIIR. In comparison with FBP and Hybrid 

IR, images reconstructed by AIIR exhibit superior image 

quality. This is evidenced by the presence of less image noise, 

and the complete elimination of streak artifacts. Furthermore, 

the AIIR allows for enhanced visualization of anatomical and 

pathological details, resulting in images with more realistic 

image texture and improved diagnostic capabilities. 

Specifically, the presence of conditions such as emphysema, 

thickened interlobular septa, and pleura can be more clearly 

visualized in images reconstructed using the AIIR. 

Figure 13. Adult Chest CT Images 

Scan Parameters: 100 kV, CTDIvol=0.21mGy, pitch=1, slice thickness=0.5 mm, 
helical scan type 

From the top to the bottom show the axial, coronal, and sagittal slices of the 

reconstructed volumes. From the left to the right show the results of (a) FBP, (b) Hybrid 

IR, and (c) AIIR respectively.
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Clinical Applications Evidence 

 

 

Figure 14 presents a representative example of clinical 

images obtained from a CT scan of an adult abdomen 

belonging to an obese patient. The example demonstrates 

the ability of the imaging reconstruction algorithm to 

capture detailed anatomic structures, including the 

abdominal organs and surrounding soft tissue. The images 

are reconstructed by FBP, Hybrid IR and AIIR under the 

same scan parameters. When comparing the images 

produced by FBP and Hybrid IR to those produced by 

AIIR, it is evident that there is a significant decrease in 

image noise, an improvement in LCD, a reduction in 

streak artifacts, an increase in realistic image 

textures, and a clearer visualization of vascular 

structures. 

 

Figure 14. Adult Abdomen CT Images 

 

 

Scan Parameters: 120 kV, CTDIvol=9.36mGy, pitch=1, slice thickness=0.5 mm, helical scan type 

From the top to the bottom show the axial, coronal, and sagittal slices of the reconstructed volumes. 

From the left to the right show the results of (a) FBP, (b) Hybrid IR, and (c) AIIR respectively. 
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Clinical Applications Evidence 

 

 

Figure 15 illustrates a representative example of clinical 

images captured during an adult abdomen and pelvis 

angiography scan. The images are reconstructed by FBP, 

Hybrid IR and AIIR under the same scan parameters. At the 

ultra-low dose, AIIR demonstrated a marked improvement in 

image quality when compared to FBP and Hybrid IR. Images 

reconstructed by AIIR exhibited a notable reduction in 

noise, a significant increase in LCD, a decrease in 

artifacts, and a more realistic representation of image 

textures across the axial, coronal, and sagittal planes. 

Furthermore, the soft tissue structures, small vessels, 

and even subtle intrahepatic and intrarenal cystic 

lesions are more clearly visible in the images 

reconstructed by AIIR.

Figure 15. Adult Abdomen CT Images 

Scan Parameters: 80 kV, CTDIvol=2.01mGy, pitch=1, slice thickness=1.0 mm, 

helical scan type. 

From the top to the bottom show the axial, coronal, and sagittal slices of the 

reconstructed volumes. From the left to the right show the results of (a) FBP, (b) 

Hybrid IR, and (c) AIIR respectively. 
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Clinical Applications Evidence 

 

 

Figure 16 shows an example of clinical images in an adult 

abdomen angiography scan. The images are reconstructed 

by FBP, Hybrid IR and AIIR under the same scan parameters. 

At the low dose, AIIR exhibits a notable improvement in 

image quality when compared to FBP and Hybrid IR. The  

image noise is significantly reduced, resulting in higher 

spatial resolution and improved visualization of the 

pulmonary artery dissection. The true and false lumen 

can be distinguished with greater clarity, allowing for 

better identification of the origin of the abdominal cavity 

from the true lumen. 

Figure 16. Adult Abdomen Angiography Scanning CT Images 
 

 

Scan Parameters: 100 kV,CTDIvol=5.71mGy, pitch=1, slice thickness=1.0 mm, helical scan type 

From the left to the right show the results of (a) FBP, (b) Hybrid IR, and (c) AIIR respectively. 
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Clinical Applications Evidence 

 

 

Figure 17 shows the example of clinical images in an 

adult head volume perfusion scan. The images are 

reconstructed by FBP and AIIR under the same scan 

parameters. Comparing to FBP and Hybrid IR, AIIR 

demonstrates a notable improvement in image quality. 

Images reconstructed by AIIR exhibit a marked reduction 

in noise, a decrease in artifacts, and an improved 

visualization of the focal cerebral ischemia and cerebral 

vessels. 

Figure 17. Adult Head Perfusion Scanning CT Images 

Scan Parameters: 80 kV, CTDIvol=166.51mGy, slice thickness=5.0 mm, axial scan type  

From the left to the right show the results of (a) FBP, (b) Hybrid IR, and (c) AIIR respectively.
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Clinical Applications Evidence 

 

 

Figure 18 shows the example of clinical images in an 

angiography scan of an adult head. The images are 

reconstructed by FBP and AIIR under the same scan 

parameters. In comparison to images reconstructed by 

FBP and Hybrid IR, images reconstructed by AIIR display  

a marked reduction in noise and cone-beam artifact, 

resulting in a clearer visualization of the large area of 

cerebral infarction. Additionally, the small blood vessels 

passing through the infarction can also be clearly seen in 

images reconstructed by AIIR.

Figure 18. Adult Head Angiography Scanning CT Images 

Scan Parameters: 120 kV, CTDIvol=48.78mGy, slice thickness=0.5 mm, axial scan type  

From the left to the right show the results of (a) FBP, (b) Hybrid IR, and (c) AIIR respectively. 
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Conclusion 

 

 

In summary, the AIIR reconstruction technology represents 

a groundbreaking innovation in the field of medical CT 

imaging, pioneered by United Imaging Healthcare. AIIR 

seamlessly integrates model-based iterative reconstruction 

with cutting-edge AI deep-learning technology. By 

leveraging the strengths of both approaches, AIIR offers a 

unique combination of robust noise reduction and artifact 

minimization, allowing for ultra-low-dose CT imaging with 

outperforming image quality. Additionally, the reconstructed 

images feature a more realistic image texture, which is highly 

valued by clinicians. The combination of these two powerful 

technologies allows AIIR to establish a new standard in 

low-dose imaging, and optimizing image quality in multiple 

aspects, such as noise reduction, excellent low-contrast 

detectability, ultra-high spatial resolution, and artifact-free 

image performances. Ultimately, AIIR can deliver exceptional 

image quality and diagnostic capabilities. 
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