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The articles contained in this magazine are provided solely by the authors, and the author(s) of each article 

appearing in this magazine is/are solely responsible for the content thereof as well as personal data, which is used 

anonymously or complied with applicable data privacy laws or regulations. United Imaging Healthcare makes no 

representation or warranties, expressly or impliedly, with respect to the accuracy, timeliness, reliability, legitimacy, 

applicability, fitness, originality, or completeness of the contents of this magazine. United Imaging Healthcare 

assumes no legal responsibility or liability for any error, omission, or illegality with respect to the material 

contained within. 

 

All articles contained in this magazine only represent the opinions and views of the authors and do not implicitly 

or explicitly represent any official positions or policies, or medical opinions of United Imaging Healthcare or the 

institutions with which the authors are affiliated unless this is clearly specified. Discussions of any brand, services, 

or products in the magazine should not be construed as promotion or endorsement thereof. 

 

Articles published in this magazine are intended to inspire further general scientific research, investigation, 

understanding, and discussion only and are NOT intended to and should not be relied upon as recommending or 

promoting a specific medical advice, method, diagnosis, or treatment by physicians for any particular individual, 

nor to replace the advice of a medical doctor or other healthcare professional. Any individual wishing to apply the 

information in this magazine for the purposes of improving their own health should not do so without consulting 

with a qualified medical practitioner. All patients need to be treated in an individual manner by their personal 

medical advisors. The decision to utilize any information in this magazine is ultimately at the sole discretion of the 

reader, who assumes full responsibility for any and all consequences arising from such a decision. United Imaging 

Healthcare makes no representations or warranties with respect to any treatment, action, or application of 

medication or preparation by any person following the information offered or provided within or through the 

magazine. United Imaging Healthcare shall remain free of any fault, liability, or responsibility for any loss or harm, 

whether real or perceived, resulting from the use of information in this magazine. 

 

The articles included in this magazine may contain work in progress, which represents ongoing research and 

development. Such technologies are not available for sale in China or the United States for clinical use and also 

may not available for such sales in other countries around the world. 

 

Please note that the magazine is intended to be distributed only within a limited scope instead of publication. 

 

If you have any questions about the magazine, or simply wish to reach out to us for any other reasons, you are 

welcomed to contact us at the following email address: compliance@united-imaging.com 

 

Disclaimer 
 



 4 

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

About United Imaging Healthcare 

 

—— 

Welcome to uINNOVATION-GLOBAL, our new, 

recurring collection of perspectives from leading 

global experts in the medical imaging field. 

Technologies discussed in the articles of the 

inaugural RSNA 2022 edition of uINNOVATION-

GLOBAL may contain work in progress, which 

represents ongoing research and development. 

Such technologies are not available for sale in the 

United States for clinical use and also may not 

available for such sales in other countries. 

 

If you have any questions about the magazine, or 

simply wish to reach out to us for any other 

reasons, you are welcomed to contact us at the 

following email address: uinnovation-

global@united-imaging.com 

 

To download the inaugural RSNA 2022 edition, click 

on the links below. 

https://usa.united-imaging.com/uinnovation-

global-collaborative-research/ 

 

 

 

 

 

 

 

 

 

 

 

©2022 United Imaging Healthcare Co., Ltd. All rights reserved. 

This magazine is 100% funded and edited by United Imaging Healthcare. 

Authors or their institutions may have received or currently receive financial 

support from United Imaging Healthcare, as indicated in each article. 

 

 

—— 

United Imaging Healthcare is a provider of high-

end medical equipment and medical IT solutions. 

From our headquarters in Shanghai's Jiading 

district to our network of research and 

development centers throughout the world, our 

global mission is to provide medical institutions 

with a full range of healthcare solutions, from 

diagnostic imaging and radiation therapy 

equipment to service, training, and medical IT 

solutions. We are dedicated to expanding access to 

high-quality medical care and improving the value 

of our services. 

 

VISION 

—— 

Leading Healthcare Innovation 

 

MISSION 

—— 

To Bring Equal Healthcare for All 

 

 

 

 

To learn more,  

visit https://www.united-imaging.com/ 

 

 

©2022 United Imaging Healthcare Co., Ltd. All rights reserved. 

No. 2258 Chengbei Rd, Jiading District, Shanghai, 201807 

Business Consultation: +86 (21)-67076666 

Email: info.global@united-imaging.com 

www.united-imaging.com 

 

©2022 United Imaging Healthcare Co., Ltd. All rights reserved.  

9370 Kirby Drive, Houston, Texas 77054 

www.united-imaging.com 

 

About uINNOVATION GLOBAL 
 

mailto:uinnovation-global@united-imaging.com
mailto:uinnovation-global@united-imaging.com
https://usa.united-imaging.com/uinnovation-global-collaborative-research/
https://usa.united-imaging.com/uinnovation-global-collaborative-research/
https://www.united-imaging.com/


 5 

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  

 

Editorial: The Future of Radiology 
 

Omer Aras, M.D.  

Department of Radiology, Memorial Sloan Kettering Cancer Center 

New York, USA 

 

 

Radiological images have become crucial in clinical practice 

for both diagnosis and treatment monitoring of a range of 

diseases. Considering the advancements in computing 

power, deep learning algorithms, and the availability of a 

large amount of data from medical imaging, clinical records, 

and wearable health monitors, artificial intelligence (AI) is 

poised to play an increasingly prominent role in medicine 

and healthcare. Specifically, in the field of radiology, every 

aspect of the imaging workflow can be improved by AI. AI 

has the potential to boost the value of medical images by 

improving imaging efficiency, image quality, and imaging 

assessment. 

In chest radiology, multiple commercial algorithms (from 

several vendors) have been cleared by the United States 

Food and Drug Administration for clinical use to detect and 

segment nodules mainly on computed tomography (CT) 

images. In addition to lesion detection and segmentation, 

these AI algorithms can also provide information on nodule 

characteristics, improve the conspicuity of nodules, perform 

automatic LUNG-RADS reporting, and provide a lung cancer 

prediction score to assess the probability of the nodule 

being malignant in nature. In addition to the evaluation of 

cancer in the lung, AI algorithms can also evaluate 

pulmonary pathologies such as pneumonia, chronic 

obstructive pulmonary disease, pulmonary fibrosis, and 

pulmonary effusion. In this issue of uINNOVATION-GLOBAL, 

readers will find an interesting article on study of AI-based 

lung nodule detection from CT images1 conducted on over 

600 patients that shows that the use of AI resulted in better 

sensitivity and accuracy compared to subjective readings.    

Among the available imaging modalities, magnetic 

resonance imaging (MRI) has many strengths for 

morphological and functional imaging, generating excellent 

soft tissue contrast at a high spatial resolution throughout 

 
1

 This product is a work in progress; the information in this article represents 

ongoing research and development. No 510k application has been filed with the 

FDA. This product is not available for sale in the U.S. for clinical uses and also may 

not be available for such sales in other countries 

 

the body. There have been efforts to reduce the 

examination time of MRI. Excessive scanning time reduces 

the daily average number of examinations that can be 

performed and causes patient discomfort. Deep learning 

has recently emerged as a tool to accelerate MRI 

examination time. United Imaging Healthcare ’s AI-assisted 

Compressed Sensing (ACS) technology has been developed 

to provide an integrated MRI acceleration solution 

combining compressed sensing, parallel imaging, half 

Fourier analysis, and AI. An interesting article on this subject 

is presented in this edition of uINNOVATION-GLOBAL, in 

which the usage of ACS for different body organs 

demonstrates either superior or comparable image quality 

with reduced scanning time as compared to conventional 

MR acquisition.     

In recent years, cardiovascular magnetic resonance (CMR) 

has emerged as a safe, non-invasive, radiation- and 

iodinated contrast medium-free technique allowing for a 

comprehensive assessment of cardiac function, dimensions, 

perfusion, and viability. As such, it may soon be among the 

most comprehensive and powerful imaging modalities for 

evaluating the cardiovascular system. CMR parameters are 

also potentially useful for repeat imaging and tracking 

disease progression or therapy efficacy. With the 

advancement of cardiac CT imaging technology, CT 

Coronary Angiogram (CTCA) is the most advanced diagnostic 

tool for detecting and monitoring coronary artery disease. 

In this issue, you will find two articles from Dr. Gregory 

Lanza and Dr. Rochita Venkataramanan sharing their 

experience using MRI and CT to manage patients with 

cardiovascular disease.  

Molecular imaging provides a method for studying the 

biological processes at the cellular and molecular level in 
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humans and in other living systems. 18F-FDG PET is widely 

used in cancer imaging for diagnosis, staging, and 

monitoring of treatment response. In the past decade, 

several radiotracers have been introduced, including 18F-

Fluciclovine, 18F-DCFPyL, 68Ga-PSMA, 18F-Fluoroestradiol, 
68Ga-DOTATATE, and 64Cu-DOTATATE, improving the ability of 

PET to stage and characterize diseases. As more potential 

PET radiotracers are being discovered, they have the 

potential to expand the use of molecular imaging for further 

clinical disciplines. In this issue, you will find two articles 

from Dr. Remy Lim and Dr. Jun Zhao highlighting their 

clinical adoptions of PET/CT and PET/MR technologies in 

conjunction with novel radiotracers. 

The availability of total-body PET devices has revolutionized 

the breadth of PET clinical and research studies. Since their 

introduction in 2018, total-body PET devices have attracted 

considerable attention in the medical community. The 

increased sensitivity of total-body PET allows faster imaging, 

use of a lower injected dose, and use of delayed scan start 

times to enhance lesion contrast. This edition of 

uINNOVATION-GLOBAL contains an interview with one of 

the creators of total-body PET, Dr. Simon Cherry, who gives 

us his personal insights into the technology and where it 

might be going in the future. Deep learning‐based 

reconstruction and analysis algorithms are potentially 

immensely valuable to manage the increasing volumes of 

acquired imaging data that TB-PET generates. Dr. Kenta 

Miwa et. al. puts together a preliminary investigation on the 

evaluation of deep learning-based PET image reconstruction 

in an article included in this issue.  

Notably, poor health outcomes can result from delays in 

diagnosis and treatment due to a lack of imaging equipment 

and personnel. More direction is needed for AI applications 

to help low- and middle-income countries (LMICs) in 

particular to increase their access to the diagnostic imaging 

and nuclear medicine tools and to address the rising burden 

of cancer. In the commentary article within this issue of 

uINNOVATION-GLOBAL, Dr. Harsh Mahajan and Dr. Vidur 

Mahajan have highlighted their important perspective on 

the future of radiology and how emerging technologies like 

AI can help LMICs. 

Intelligent diagnostic imaging workflows have also become 

possible due to the rapid development of AI technology in 

recent years. With the goal of significantly reducing the 

repetitive work of radiologists and technologists and 

improving patient care, intelligent diagnostic imaging 

workflows may perform functions such as intelligent 

authentication of patient identity, intelligent voice 

interaction, intelligent patient positioning, and intelligent 

scanning parameter setting throughout the entire image 

scanning process. Although medical imaging has improved 

over the years, it still faces the challenges of long 

examination times and low acceleration rates. The future of 

radiology will undoubtedly see advances in precision 

medicine aided by AI tools. Future synergies with other 

emerging diagnostic tools will also be required. 

 

 

Dr. Omer Aras  

Guest Editor

 

Guest Editor Biography 

 

 

 

Dr. Omer Aras 

Dr. Aras is a physician-scientist with formal training in both clinical radiology/nuclear radiology 

and molecular imaging research. His clinical interests lie in oncologic imaging, with a focus on 

genitourinary and bone marrow cancer. His primary research interest involves developing novel 

and innovative molecular imaging approaches for cancer diagnostics and combining and utilizing 

the biology, nanotechnology, chemistry with advanced non-invasive imaging methods 

(predominantly PET/optical imaging) to create novel imaging agents that allow much earlier 

detection and improve therapy monitoring of cancer. As a result of translational work, much of it 

completed under his own initiative, he has published a number of peer-reviewed papers in 

biomedical journals and been invited to present his work at national and international venues. 
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Quantitative assessment of AI-based chest CT lung nodule detection in 
lung cancer screening: future prospects and main challenges 

 

Marufjon Salokhiddinova, Ruth Awotwea, Munojat Ismailovaa  

aRadiology Department, Republic Zangiota No-2 COVID Specialized Hospital, Uzbekistan 

 

 

1. Introduction 

Lung cancer is the most common cause of cancer-related 

death. It is known for being particularly aggressive. Early 

detection of asymptomatic lung cancer is crucial for optimal 

treatment, which can greatly increase patients' survival 

rates. Since the beginning of the twentieth century, the 

incidence in the population has increased several times. Its 

growth is especially pronounced in industrialized countries, 

where lung cancer ranks first in the structure of oncological 

morbidity. Lung cancer also ranks among the top three 

cancers in terms of incidence rates for both men and 

women. As the precursor, lung nodules are the main 

indication of lung cancer. Therefore, lung screening by CT 

exams has been recommended for identifying and 

characterizing nodules to detect early lung cancer.  

The manifestation of lung nodules in CT images is 

complicated because of their irregular shapes, broad gray 

value range, and varied scale [1]. It is a time consuming and 

challenging task to effectively detect nodules for 

Radiologists. Additionally, differentiating benign from 

malignant nodules is another challenging task. Currently, 

pulmonary nodules incidentally observed on CT exams are 

handled by following consensus standards [2, 3]. But that 

has several drawbacks. Because the Radiologist’s 
interpretation of each lesion is a complicated process, the 

evaluation performance is highly dependent on the 

experience or skills of the Radiologist, so the diagnosis is 

not always consistent. Considering the low efficiency of 

human reading, some patients might miss the ideal 

opportunity for treatment [4,5,6,7]. 

The computer-aided automatic solution has been proposed 

and utilized to address these challenges. It is expected to be 

able to overcome physical human limitations, such as the 

limited gray level recognition of the human visual system, 

fatigue, and distraction [8]. It can also provide diagnostic 

results in a repeatable and reliable manner. It can therefore 

be used to reduce Radiologists’ workloads, locate nodules 
that Radiologists might overlook, and improve diagnostic 

accuracy [4]. Recently-developed artificial intelligence (AI) 

technology has made the computer-aided automatic 

solution even more promising. Deep learning, as one subset 

of AI technology, allows the model to learn high-dimensional 

abstract features from vast amounts of data and empowers 

the model to handle complex tasks. AI has demonstrated 

many compelling advantages and accomplishments 

[9,10,11,12,13] in imaging diagnosis and/or evaluation. 

In this study, we aim to quantitatively assess the 

performance of AI-assisted reading versus traditional 

radiology reports in detecting lung nodules and evaluate AI 

as a method of characterizing and classifying lung nodules 

in lung cancer screening. 

 

2. Materials and Methods 

2.1 Data Preparation and Categorization  

The study included 635 patients with a mean age of 52±9 

years old. They underwent chest CT exam from May to 

October 2021 at Republic Zangiota No-2 COVID Specialized 

Hospital, Uzbekistan. Scans were not included in the study 

if: 

(a) All lung lobes were not fully visible in the field of view               

(b) The image contained motion artifacts                              

(c) The image did not meet Digital Imaging and 

Communications in Medicine standards                           

(d) The Radiologists responsible for ground truth labeling 

were unable to confidently annotate the images [14] 

 

2.2 CT Image Acquisition 

For non-contrast-enhanced chest CT scanning, the uCT® 550 

scanner (United Imaging Healthcare, Shanghai, China) was 



 8 

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  

 

used. The collimation of the CT detector was 256 x 0.625 

mm, 64 x 0.625 mm, 96 x 0.6 mm, and 320 x 0 x 5 mm, 

respectively. In the supine position, each subject underwent 

an inspiratory CT scan during a single breath hold. The tube 

voltage was set to be either 120 kV or 100 kV depending on 

the patient size. The dose modulation was on, and the tube 

current ranged from 50 to 200 mAs. Slice thickness ranged 

from 0.625 to 1.0 mm. 

 

2.3 Radiologist Interpretation 

One Radiologist with over five years of experience reviewed 

the chest CT images. RadiAnt DICOM Viewer was used to 

review the studies. The Radiologist was given unlimited 

reading time and the option to adjust the display based on 

scan-specific characteristics to ensure optimal reading 

quality. Nodules in our dataset were divided into five types 

based on the National Comprehensive Cancer Network 

(NCCN) recommendations for lung cancer screening 

(version 2.2019): solid nodules (<5 or >5 mm), subsolid 

nodules (<5 or >5 mm), and calcified nodules. 

 

2.4 Artificial Intelligence-assisted Reading 

On chest CT images, uAI® Discover Chest2 (United Imaging 

Healthcare, Shanghai, China) can automatically identify and 

measure lung nodules. The CT console automatically sends 

the CT images to the AI server for lung nodule detection 

once acquired. It took about 2 to 4 minutes to transfer and 

process the whole volume images of each patient. In short, 

this system automatically generates a bounding box that 

shows the characteristics of the suspected nodule, such as 

its diameter and volume, as well as its components (solid, 

part-solid, or nonsolid). 

 

2.5 AI Model Development 

Recent research [15,16,17] studies have proposed using 

deep learning approaches for the detection and 

classification of lung nodules with CT images, as such 

approaches have demonstrated significant improvements in 

both tasks. In this work, the automated processing was 

performed using United Imaging Intelligence's uAI Discover 

Chest AI-based approach. For automated nodule detection, 

the uAI Discover Chest employs cascading feature pyramids 

and a heterogeneous convolutional neural network in its 

algorithm. Conventional deep learning approaches can only 

identify objects at a single scale – they cannot handle items 

with significant size variations. As shown in Figure 1, the uAI 

Discover Chest approach uses a 3D feature pyramids 

network (FPN) with V-Net to specifically solve the large-scale 

variance problem. 

 

 

 

Figure 1. The architecture of the feature pyramid network (FPN). 

 
2

 This product is a work in progress; the information in this article represents 

ongoing research and development. No 510k application has been filed with the 

FDA. This product is not available for sale in the U.S. for clinical uses and also may 

not be available for such sales in other countries 
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2.6 Nodule Categorization 

Lung nodules are divided into three main types according to 

the NCCN guideline [18]: solid, part-solid, and non-solid 

nodules. Each  

type has a unique management process. Solid nodules are 

further divided into strata of <5 and >5 mm, part-solid 

nodules <5 and >5 mm, and calcified nodules. Typical 

nodules of different types are shown in Figure 2.

 

i)                                        ii) 

 

iii)                                         iv) 

 

v) 

 

Figure 2. Nodule Categorization according to NCCN. i) Solid >5 mm, ii) Solid <5 mm, iii) Subsolid >5 mm, iv) Subsolid <5 mm, v) Calcified. 
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2.7 Panel Review 

Two Radiologists with 15 and 20 years of experience in 

chest radiology were included in the review panel to 

evaluate the results reported by the Radiologist and AI 

system. The review panel was to establish a reference 

standard for the presence of nodules. Based on the 

standard, the figure of merit (FOM) could be calculated by 

including the number of false negatives, true negatives, 

false positives, and true positives. For instance, a lung 

nodule was regarded as a false-positive nodule if it was 

discovered by a Radiologist or detected by AI-assisted 

reading but was not confirmed by the review panel. The 

system interface of the uAI Discover Chest assisted lung 

nodule evaluation is shown in Figure 3. 

  

2.8 Statistical analysis 

In this study, 1082 nodules were included from the data of 

635 patients, further classified as 778 (<5mm = 513 and >5 

mm = 265) solid nodules, 283 (<5mm = 186 and >5 mm = 

97) subsolid nodules and 21 calcified nodules. Statistical 

analysis was performed using MedCalc®, version 19.3 

(MedCalc Software Ltd). Sensitivity and accuracy were 

measured to evaluate the performance of lung nodule 

detection, using the following equations, respectively: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃(𝑇𝑃+𝐹𝑁)      (1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+ 𝑇𝑁 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁   (2) 

where TP is the true positive, TN is the true negative, FP is 

the false positive, and FN is the false negative. FP is an 

outcome where the model incorrectly predicts a nodule in 

the lung CT without its existence.  

   

3. Results 

In the detection of solid nodules, the sensitivity and 

accuracy were 96.80% and 94.08% for AI-reading and 

89.50% and 85.34% for radiological observation, 

respectively. The sensitivity and accuracy for <5 mm solid 

nodules were 96.80% and 94.34% with AI-reading and 

91.70% and 88.65% with radiological observation, and for >5 

mm solid nodules were 96.90% and 93.58% with AI-reading 

and 85.10% and 79.02% with radiological observation, 

respectively. 

 

 

Figure 3. uAI® Discovery Chest-assisted lung nodule evaluation system interface 

 

A similar analysis was performed for sub-solid and calcified 

nodules. The sensitivity and accuracy were 93.34% and 

89.04% for AI-reading and 80.00% and 75.26% for 

radiological observation, respectively, in the sub-solid 

nodule detection. The sensitivity and accuracy for <5 mm 

sub-solid nodules were 93.80% and 90.21% with AI-reading 
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and 87.10% and 82.32% with radiological observation, and 

for >5 mm sub-solid nodules were 92.50% and 86.86% with 

AI-reading and 67.40% and 63.36% with radiological 

observation, respectively.  

The sensitivity and accuracy of the AI-reading-based 

calcified nodule detection were 95.34% and 95.34%, and 

88.90% and 76.19% for Radiologist observation, 

respectively. The comparison of the detection performance 

between AI reading and Radiologist observation for all solid, 

subsolid, and calcified nodules is shown in Figure 4. Figure 5 

displays the bar graph of the sensitivity and accuracy of AI 

reading and Radiologist observation for <5 mm and >5 mm 

solid and subsolid nodules detection. 

 

 

Figure 4. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for solid, subsolid and calcified nodules detection. 

 

 

Figure 5. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for a) <5 mm and >5 mm solid nodules and b) <5 mm and >5 mm subsolid nodule 

detection. 

 

4. Discussion 

The performance of AI reading and Radiologist observations 

were quantitively assessed in detecting multiple type 

nodules including solid, subsolid, and calcified ones. The 

assessment showed that the performance of AI was better 

than Radiologist performance in all nodule categories. This 

study suggests that AI was more sensitive and accurate in 

detecting the nodules. It is consistent with most other 

studies that AI is a reliable and sensitive method to use in 

lung nodule detection. 

Compared to earlier studies [19,20,21], uAI Discover Chest 

introduced several key advanced techniques. First, it used a 
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classification network to further reduce false positives and 

to analyze large-scale data. The model demonstrated a 

significantly higher identification rate in sensitivity and 

accuracy than Radiologists achieved. By utilizing the 

threshold ReLU, this heterogeneous network not only 

reduced the overfitting problem but also improved 

detection performance. The detection of solid nodules had 

the highest sensitivity as compared to sub-solids and 

calcified lesions. The results obtained in this work showed 

that the overall performance of uAI Discover Chest 

algorithm in detecting lung nodules of different sizes and 

different types depicted better outcomes as compared to 

the Radiologist’s assessment, especially in detecting nodules 
that the Radiologist missed. 

Nevertheless, this study had a limitation that need to be 

addressed in the future. There was no true gold standard 

available for the comparison of outcomes. For the 

evaluation in this study, a reference standard was carried 

out by the two Radiologists having an experience of 8 years 

and 7 years respectively. In such cases, there is a possibility 

of missing out fewer lung nodules which may lead to an 

inconsistency of obtained results. According to recent 

research, the performance of a cutting-edge artificial 

intelligence system for lung nodule detection and 

characterization is comparable to that of skilled 

Radiologists. Numerous AI studies discuss cutting-edge 

architectures for finding lung nodules, with the Radiologists' 

consensus as the reference standard [22,23,24].  

Finding all lung cancers, not all nodules, is the ultimate goal. 

Therefore, future research should concentrate on a 

reference standard that measures cancer detection and is 

based on histopathological evidence or follow-up imaging 

for at least 2 years (depending on morphology to judge the 

stability of lesions). Unfortunately, there are no publicly 

available datasets with a sizable number of CT-detected 

malignant nodules [25]. The NLST database is the largest 

database that is open to the public, but the metadata does 

not specify which nodules were biopsied. Therefore, even 

with all the available screening scans and knowledge of the 

pathological evidence, it is not always clear which CT lesions 

were cancerous. 

However, the issue of lack of data is currently being 

addressed by a variety of approaches, one of which is the 

creation and dissemination of databases that are open to the 

public. For instance, in 2017, the National Institutes of Health 

disseminated one hundred thousand labeled chest 

radiographs [26,27] in their collection. The labels of the data 

were obtained by applying the technology of natural 

language processing into reading the radiology reports. It 

makes it possible to implement bigger databases and skip the 

human labeling step. It will also resolve the imperfection in 

statistical significance and make it conducive to further study.  

The methods employed in lung nodule image classification 

have shown massive progress from user-defined to 

technological feature-based methods. Though the accuracy 

achieved with the user-defined features is over 90%, as seen 

in the work of Liu and Hou [28], and Wei and Cao [29], it is 

solely based on the professional understanding and analysis 

of nodules which is very subjective and lacks uniformity and 

standardization. Performance can be improved by 

combining it with other methods like generic features. Most 

research studies have resorted to using AI tools in 

developing algorithms, which are most efficient in 

identifying features of imaging and making precise 

differentiation, improving lung cancer detection [30]. AI can 

be employed to improve the efficiency of Radiologists in 

nodule detection. It must meet several requirements, such 

as processing speed, cost of training, maintenance, and 

implementation to detect various shapes, and low numbers 

of false positives, for Radiologists to use it routinely [31,32]. 

The use of a convolutional neural network (CNN) like the 

generative adversarial network (GAN) is another method 

that can be utilized to circumvent the lack of large datasets 

[33]. This method involves the generation of data sets that 

are fabricated to contain characteristics that are analogous 

to those of a specific training dataset. These GANs could be 

taught to learn representative features in a totally 

unsupervised fashion through the process of training [31]. 

The labeling step can be skipped entirely because the 

features are generated rather than chosen from images that 

already exist in the database. GANs can either be integrated 

into supervised strategies or used on their own without 

supervision. 

 

5. Conclusion 

In conclusion, the experiment’s results demonstrated that 
the uAI Discover Chest outperformed the Radiologists’ 
assessment on average in terms of lesion identification 

sensitivity. Furthermore, the performance of the uAI 
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Discover Chest algorithm to identify lung nodules is 

consistent and less subjective compared to assessments 

made by skilled Radiologists regardless of lung nodule size. 

Results obtained in this study also suggest that the use of 

uAI Discover Chest for clinical screening can greatly benefit 

Radiologists in making a substantial diagnosis. The uAI 

Discover Chest can be considered an effective tool due to its 

advantages such as consistent performance, faster 

processing, and high clinical efficiency.   

 

6. Image/Figure Courtesy 

All images are the courtesy of Republic Zangiota No-2 COVID 

Specialized Hospital, Taskent, Uzbekistan.   
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Abstract 
Magnetic Resonance (MR) Imaging plays a valuable role in 

diagnosis and prognosis of diseases. However, the longer 

scanning time of MR examinations is considered one of the 

biggest challenges faced by radiology departments and their 

patients. Recently, the introduction of artificial intelligence 

(AI) and deep learning methods have made it possible to 

enable ultra-fast image acquisition while maintaining high 

resolution image quality. In this work, a deep-learning-based 

reconstruction technique by United Imaging Healthcare 

called AI-Assisted Compressed Sensing (ACS) was evaluated 

qualitatively and quantitatively for its utility in routine 

clinical settings for brain, knee, kidney, liver and spine. MR 

scans were conducted with ACS and without ACS sequences. 

Images were assessed by a Radiologist for their quality, 

artifacts, diagnostic efficacy and sharpness. A quantitative 

assessment was done by calculating signal to noise ratio 

(SNR) and contrast to noise ratio (CNR). A qualitative 

evaluation by a Radiologist showed that the overall quality 

and diagnostic information in images acquired with ACS was 

similar to images obtained without ACS. Similarly, the SNR 

and CNR values obtained from images with ACS 

demonstrates significantly higher values (p < 0.05) as 

compared with images acquired without ACS. Results 

obtained in this study also found that ACS-enabled images 

not only maintain good quality and high resolution with 

better sharpness but also takes much lesser time for 

acquisition. In conclusion, the ACS technique is easy to 

implement in routine clinical settings, provides considerable 

image quality as compared to those techniques with routine 

MR sequences, and saves significant time during acquisition, 

which helps Radiologists and imaging technologists plan 

more cases with an adequate quality of images for 

diagnostic purposes. 

1. Introduction 

MRI can provide multi-parameter and multi-directional 

imaging of organs, which has significant application value in 

disease diagnosis and prognosis monitoring. Much effort 

has been made in recent years to enhance the field of view 

(FOV), resolution, and acquisition time of MRI sequences. 

The long examination duration is one of the challenges 

faced by radiology departments and the patients being 

examined, making it difficult for some patients to hold still 

during the examination, leading to motion artifacts. Longer 

scanning time not only introduces artifacts in acquired 

images but also significantly increases health cost and 

availability, especially in countries where the number of MR 

scanners are limited [1]. The MR imaging cycle is repeated 

many times during the acquisition process and the number 

of cycles depends on the quality of the image that is 

required. Signal-to-noise ratio (SNR) is primarily used in MR 

for image evaluation and quality assurance; however, SNR in 

MR is inherently constrained. One must find an acceptable 

trade-off between spatial resolution and scan time in most 

clinical applications. With more clinical examinations being 

performed, innovative accelerated imaging is urgently 

needed to enable ultra-fast scanning while producing high-

quality images [2]. In recent times, compressed sensing-

based techniques, (nonlinear mathematical models that 

successfully suppress noise bands and acceleration-induced 

artifacts), have been developed and employed in several 

clinical studies [3-5]. These technologies effectively reduce 

imaging time, but at the cost of image quality. The number 

of studies examining the image quality of compressed 

sensing for therapeutic applications is growing. 

Nevertheless, image quality of compressed sensing for 

cardiac, brain, liver, cervical artery, and prostate MR is 

poorly studied, and analysis of its use in clinical routine is 
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lacking. Several attempts have been made to overcome 

issues faced in compressed sensing as well as in other 

acceleration techniques such as half Fourier and parallel 

imaging methods. Recently, a deep- learning-based 

reconstruction technique called uAI®-Assisted Compressed 

Sensing (ACS) was introduced that is integrated with 

conventional acceleration techniques to provide better 

quality and reduced scanning time [6]. Despite the fact that 

ACS has been successfully applied to most body organs, its 

utility in a routine clinical setting has not been specifically 

tested. This study is thus conducted to measure 

performance of ACS in terms of scanning time, qualitative 

and quantitative parameters in depicting image quality in 

clinical settings.    

 

2. Materials and Methods 

2.1 Subjects   

In this study, 25 subjects were randomly selected to 

undergo MR examination of different body regions such as 

brain, spine, knee, liver and kidney prospectively. For each 

body region, five subjects were chosen so that five MR 

datasets were acquired for each body region, with and 

without the ACS technique, using different MR contrasts. 

 

2.2 MR Examination & protocols  

All MR exams were performed on the 3T uMR® 780 system 

(United Imaging Healthcare Shanghai, China) at Sprint 

Diagnostics in Hyderabad, India. Before the examination, a 

consent form was signed by all subjects. For brain MR 

scanning, a dedicated 24 channel head-neck coil was used, 

while spine exams were performed using a 32-channel 

spine coil. For knee MR, a dedicated 12 channel coil was 

used, while for liver and kidney a combination of 12 channel 

body coil and 12 channel spine coil was used. A complete 

detail of different contrast and protocols parameters used 

in this study are included in Table 1. All sequence 

parameters were kept identical to acquire data with ACS and 

without ACS in all body regions.  

 

Table 1. Scanning protocols of all sequences. 

 

Region Sequence Name ACS/Non-ACS Plane TR TE ST FA #slice AD AF_ACS

T1-weighted FSE Flair Non-ACS Axial 2023 22.96 5 90 23 02:01

T2-weighted FSE Flair with FS Non-ACS Axial 9000 103.32 5 90 23 02:24

T1-weighted FSE Non-ACS Axial 375 6.32 5 90 23 02:08

T2-weighted FSE Non-ACS Axial 5552 118.08 5 90 23 01:07

T1-weighted FSE Flair ACS Axial 2023 22.96 5 90 23 00:53 2.5

T2-weighted FSE Flair with FS ACS Axial 9000 103.32 5 90 23 01:30 2.5

T1-weighted FSE ACS Axial 375 6.32 5 90 23 00:57 2.5

T2-weighted FSE ACS Axial 5552 118.08 5 90 23 00:39 2.25

T1-weighted FSE Non-ACS Sagittal 750 9.26 4 90 11 01:49

T2-weighted FSE Non-ACS Sagittal 5421 121.8 4 90 11 02:21

T1-weighted FSE ACS Sagittal 750 9.26 4 90 11 00:51 2.25

T2-weighted FSE ACS Sagittal 5421 121.8 4 90 11 01:00 2.25

T2-weighted_NAVI Non-ACS Axial 2775 84.8 6 90 24 03:53

T2-weighted FSE with FS and BH ACS Axial 2950 98.42 6 90 24 00:17 2.25

T2-weighted_NAVI Non-ACS Axial 2700 84.8 6 90 24 04:08

T2-weighted FSE with FS and BH ACS Axial 8220 121 6 90 24 00:12 2.75

Proton Density FSE with FS Non-ACS Coronal 2780 38.3 3 90 26 03:34

T2-weighted FSE Non-ACS Sagittal 3200 118.08 3 90 26 04:10

T1-weighted FSE Non-ACS Axial 686 7.64 3 90 26 04:13

Proton Density FSE with FS ACS Coronal 2780 38.3 3 90 26 01:54 2

T2-weighted FSE ACS Sagittal 3200 118.08 3 90 26 01:49 2.25

T1-weighted FSE ACS Axial 686 7.64 3 90 26 01:47 2.25

FSE- Fast Spin Echo, FS- Fat Supression, BH- Breathhold, TR- Repetition Time, TE- Echo Time, ST- Slice Thickness, FA- Flip Angle, AD- 

Acquistion Duration, Acceleration Factor for ACS

Knee

Brain

Spine

Liver

Kidney
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2.3 Qualitative Evaluation  

After the MR scan, images were transferred to a local clinical 

picture archiving and communication system (PACS) system 

and uWS® MR workstation (United Imaging Healthcare, 

Shanghai, China) available on the premises. For the 

qualitative evaluation of images acquired in different body 

regions from all subjects, a standard scoring was designed  

 

to evaluate quality in terms of artifacts in images, sharpness 

of tissue edges, overall images quality and the diagnostic 

efficiency of images. The scores were given on a 5-point 

scale ranging between 0 to 4 based on the parameters. 

Detailed information on the scoring is given in Table 2 

below. A Radiologist with around 5 years of overall 

experience was asked to read all images and provide a 

rating based on the parameters shown here. 

Table 2. Scoring criteria for qualitative analysis. 

Parameters 
Scores 

0 1 2 3 4 

Image Artefact 
Non-Diagnostic Image 

Quality 
Major Artifacts Moderate Artifacts Mild Artifacts No Artifacts 

Image Sharpness Poor Intermediate Acceptable Good Perfect 

Overall Image Quality Poor Intermediate Acceptable Good Perfect 

Diagnostic Efficiency Poor Intermediate Acceptable Good Perfect 
 

 

2.4 Quantitative Evaluation  

Following the Radiologist's evaluation of qualitative criteria, 

all images were anonymised and transferred to a 

workstation. The quantitative assessment was further 

performed by calculating Signal to Noise ratio (SNR) and 

Contrast to Noise Ratio (CNR) in all the sequences for all 

body regions. To calculate these image quality parameters, 

multiple regions of interest (ROIs) in different tissue 

locations were drawn in the images to obtain average signal 

intensities and standard deviation of those signal 

intensities. The SNR and CNR measurements were 

performed using MATLAB (v.2018; MathWorks) functions 

using the formula given in Equation 1 and Equation 2. In 

order to demonstrate the capabilities of ACS enabled 

imaging, scanning time was also included in study as a 

quantitative parameter.   𝑆𝑁𝑅 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒 … … … … … … … (1) 

𝐶𝑁𝑅 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒 … … … … … (2) 

SNR and CNR values were obtained in all sequences for five 

regions obtained from the 25 subjects and further used to 

conduct statistical analysis and correlations with qualitative 

evaluations done by the expert Radiologist.   

 

2.5 Statistical analysis:  

All the statistical analysis was done in MedCalc®, version 

19.3 software (MedCalc Software Ltd). Qualitative and 

quantitative results obtained from both ACS and Non-ACS 

enabled image assessments were then compared using 

Mann-Whitney U-test and unpaired Student’s t-test. Using 

Pearson's correlation coefficient, SNR and CNR values from 

non-ACS sequences were compared with those obtained 

from ACS sequences (r). 

 

3. Results 

One Radiologist interpreted and scored the images acquired 

in five different regions of all 25 subjects included in this 

study and was asked to evaluate quality in terms of artifacts, 

sharpness, overall image quality and diagnostic efficiency 

for two groups (ACS vs. Non-ACS) of images. The mean score 

of all assessments done by the Radiologist for each body 

region examined in this study are presented in Figure 1. 

Mann-Whitney U-test conducted in this study shows no 

significant difference (p > 0.05) in qualitative image quality 

between images acquired with ACS and images acquired 

without ACS, which means comparable results for both 

groups. A Radiologist's qualitative evaluation found that the 

diagnostic quality with all four parameters such as image 
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artifact, image sharpness, overall image quality and 

diagnostic efficacy of images acquired with ACS was similar 

to or better than those obtained without ACS (Figure 1).   

For the quantitative evaluation, SNR and CNR was measured 

in all sequences acquired with and without ACS as reported 

in Table 1 above for all body regions. The SNR values across 

all sequences for brain, spine, liver, kidney and knee were 

37.92 ± 1.79, 44.2 ± 5.26, 43.26 ± 1.37, 43.41 ± 1.62 and 

39.62 ± 3.63 in images acquired without ACS whereas the 

SNR values were 40.13 ± 2.00, 45.75 ± 4.90, 45.5 ± 2.20, 

45.36 ± 2.56 and 41.60 ± 4.51, respectively in images 

acquired with ACS as shown in Figure 2. Similarly, CNR 

values obtained for brain, spine, liver, kidney and knee were 

21.18 ± 5.23, 27.62 ± 5.90, 20.83 ± 3.62, 24.75 ± 2.95 and 

24.75 ± 2.95 for images acquired without ACS and the CNR 

values were 22.10 ± 5.71, 29.70 ± 5.78, 22.54 ± 4.20 28.7 ± 

3.68 and 28.80 ± 3.92, respectively for images acquired with 

ACS as shown in Figure 3. Both SNR and CNR values in 5 

different regions were found to be slightly better in images 

acquired with ACS as compared to images acquired without 

ACS.  According to the unpaired Student's t-test, ACS-based 

measurements showed substantially higher values (p < 0.05) 

for both SNR and CNR ac compared to non-ACS 

measurements. There was a good correlation (r = 0.93 for 

SNR and r = 0.88 for CNR) between non-ACS and ACS 

measurement. 

In terms of scan time differences, total scanning time for all 

sequences acquired in each body region was calculated. For 

an example, T1-weighted FSE, T2-weighted FSE, T1-weighted 

FSE Flair, and T2-weighted FSE Flair with FS were acquired in 

the brain region with and without the ACS technique, and 

the total time was calculated for all 4 sequences acquired 

with ACS and without ACS. Similarly, the total scanning time 

was calculated for all five body regions for the respective 

sequences included in this study. Figure 4 shows the total 

scanning time values for each body region. The differences 

in scanning time of ACS enabled sequences showed 

significant improvements in scanning time compared to 

non-ACS sequences. For brain, spine, liver, kidney and knee 

examination, an improvement in scan time in terms of 

percentage of 48.10%, 55.52%, 92.80%, 95.15% and 54% 

respectively was observed, which shows impressive results 

while ensuring similar image quality.  Examples of images 

acquired with ACS and without ACS technique in different 

body regions are shown in the Figures 5-9.
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Figure 1. Mean qualitative score of ACS vs. Non-ACS for all body regions read by a Radiologist. 

 

 

 

  

 

                Figure 2. SNR across all body regions for non-ACS vs. ACS.                         Figure 3. CNR across all body regions for non-ACS vs. ACS.      

 

 

 

 

 

Figure 4. Total scanning time across all sequences for different body regions with percentage difference in scanning time between non-ACS and ACS in minutes. 
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Figure 5. Brain MRI slices for all sequences of a representative subject. 

 

 

 

 

Figure 6. Spine MRI slices for all sequences of a representative subject. 
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Figure 7. Liver MRI slice for all sequences of a representative subject. 

 

 
 

Figure 8. Kidney MRI slice for all sequences of a representative subject. 
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Figure 9. Knee MRI slices for all sequences of a representative subject. 

 

4. Discussion/Conclusion 

In this study, a clinical study of AI Assisted Compressed 

Sensing (ACS) magnetic resonance technology developed by 

United Imaging Healthcare was performed to measure its 

utility and effectiveness in routine clinical settings for 

different body regions (brain, spine, liver, kidney, and knee). 

Performance was measured in terms of scan duration, 

including both qualitative and quantitative parameters.  

The subjective image quality scoring parameters included 

artifacts in images, sharpness of tissue edges, overall image 

quality and the diagnostic efficiency of images and 

quantitative evaluation was done by measuring SNR and 

CNR. Often, compressed sensing methods are applied to 

different sequences, but they provide image artifacts and 

low quality of images for diagnostic purposes. In the past, 

several methods have also been introduced that help in 

image acquisition time reduction but lack in providing better 

outcomes for Radiologists to read or interpret those images 

for diagnostic accuracy. The findings of this study, on the 

other hand, revealed that the diagnostic quality of images 

acquired with ACS was similar to or better than images 

obtained without ACS.  

Scan time, SNR, and CNR are the parameters traditionally 

used to demonstrate image quality with reasonable time for 

acquisition; there is typically a trade-off among all these 

parameters. Compared to non-ACS sequences, ACS has 

much shorter scan times for all body region sequences, 

enabling ultra-fast scans. Due to discomfort, disturbances in 

consciousness, and other factors, it might be difficult for 

some patients with severe disorders to maintain still for an 

extended period during imaging studies, which causes 

artifacts and lowers image quality. This issue can be 

resolved with ACS technology, which can also enhance 

image quality and clinical precision. Additionally, in line with 

literature [7], the SNR and CNR of the ACS subgroup were 

greater than those of the non-ACS or conventional group.   

This study has some limitations. First, the data was acquired 

from a single institution and a small cohort, which may 
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influence the outcomes. A large cohort and multicentre 

study can provide stronger evidence for larger clinical 

applications. Second, the reference measurement was done 

by only one Radiologist; inter-observer and intra-observer 

variability were not evaluated. 

In conclusion, ACS technology not only substantially lowered 

scan time duration, but also provided diagnostic quality 

images without artifacts -- which enables this method to be 

clinically suitable, especially for the routine clinical settings 

where workload is high and patients may be non-

cooperative. Sequences enabled with ACS should more 

frequently be used in the clinical settings to improve image 

quality, diagnostic value, and the effectiveness of radiology 

imaging departments.   

 

5. Image/Figure Courtesy 

All images are the courtesy of Sprint Diagnostics, Jubilee 

Hills, Hyderabad, Telangana 500033, India. 
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1. Introduction 

Cardiovascular magnetic resonance (CMR) imaging is 

considered the gold standard imaging modality for the 

assessment of cardiac structure and function [1,2] and the 

primary imaging modality of myocardial tissue 

characterization. However, CMR is riddled with intrinsic 

difficulties as its implementation is complex and requires 

specialized technologist training and expertise. Varying 

levels of operator expertise introduce non-uniformity 

between scans within a center and particularly serial studies 

in a specific patient. In addition, generating accurate and 

thorough myocardial characterization results can require 

long periods of limited physical motion as well as repeated 

breath holds. Consequently, patient throughput decreases 

and scanner productivity declines. Furthermore, image data 

post-processing techniques that take advantage of the 

modality’s potential require image processing resources 
unavailable in most nonacademic institutions.   

Artificial intelligence (AI) is increasingly used in healthcare. A 

recent literature review of AI identified five main health care 

areas where AI is expected to have significant impact [3]: 

health care systems management, diagnostics, clinical 

decision-making, patient data and predictive medicine.  For 

CMR, AI will shorten and simplify workflows, preserve image 

quality, improve uniformity between scans, and enhance 

 
1

 Washington University School of Medicine receives research support from United Imaging through a sponsored research agreement. Dr. Gregory Lanza is a principal 

investigator for the research. 

data interpretation for any MR center, regardless of its size 

or location. 

 

 

The aim of this review article is to outline and describe some 

of the implementations of intelligent features for CMR 

imaging using a 1.5T United Imaging MRI (uMR 570) scanner 

in collaboration with Washington University School of 

Medicine in St Louis.  The ongoing improvements strive not 

only for optimal image quality and study workflow but also 

overall for a simpler modality more accessible for the care 

of a broader patient population, for example individuals 

receiving cardiotoxic therapies for survival.  

 

2. EasyScan 

Obtaining scout scan acquisitions for CMR in the different 

orientation requires a skilled technologist. However, 

longitudinal studies for the image-guided management of 

patients are inherently subject to data inaccuracy, and 

variability exists when different technologists are involved.  

With the advent of automated or semi-automated slice 

adjustment methods, CMR studies have incorporated new 

geometric prescription processes [4-11]. For example, 

Lelieveldt et al [4,5] matched scout images to thoracic 
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anatomy models and estimated the left ventricular 

orientation for automatic view planning. The technique was 

limited to short-axis slice alignments and computational 

time was 3–5 min. While the concept was good, the 

methods were sensitive to the errors in landmarks.  

 

In practice, the optimal position of the reference planes 

differ among individuals and they do not always pass 

through predefined landmarks. 

 

Alternatively, United Imaging Healthcare implemented a 

slice alignment method (EasyScan) based on a deep learning 

regression network. Rather than relying on a few anatomical 

points, the image plane calculation utilizes all voxels in the 

region, reducing landmark detection errors and adding 

clarity to landmark annotation. The EasyScan AI planning 

algorithm2 consists of three steps: (1) cardiac region 

segmentation using the Otsu method (Ref); (2) distance map 

calculation using the trained regression network; and (3) 

plane fitting using a least-squares method.  

In our studies, EasyScan accelerated CMR imaging 13% (2.57 

min, p<0.001, 95% CI [2.31, 2.83]) versus the traditional scout 

scan approach. Moreover, in contradistinction to the four-

breath holds needed for typical plane prescriptions, EasyScan 

achieved the result with a single breath-hold scan and 

minimal operator dependence. EasyScan simplified cardiac 

image planning in all subjects and also achieved better scan 

accuracy with less plane angulation error, compared to 

previous reports for all four cardiac views (Fig. 1).  

 

 

 

Figure 1. shows the Easy scan utilizing multiple 2D transverse slices to generate the standard views in a single breath hold, which results in faster imaging and greater 

reproducibility between scans. 

 

3. AI Shim™ 

In CMR imaging, subject-induced magnetic field 

inhomogeneities can become pronounced due to 

susceptibility changes within the field of view [12]. Tissue-air 

boundaries compromise the B0 field, and careful shimming 

is required to establish a homogeneous and on-resonance 

B0 field around the heart.  

 

This is particularly true when a balanced steady state free 

precession (bSSFP) sequence is used for acquisition, which 

is sensitive to the off-resonance effect [13]. In general, a 

“frequency-scout” scan is involved in the workflow. 

 

 

        

                                                    

2The EasyScan algorithm currently is not available for clinical use in the U.S. and also may not be available for such use in other countries. 
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Here, a series of images with different off-resonance 

frequencies are acquired that help the operator choose the 

best scanner frequency. Unfortunately, this process is time-

consuming and operator dependent.  

To address these issues, a generalized shimming tool using 

a mask-based AI segmentation technique (AI shimTM) 3 was 

developed [14]. AI shimTM uses a dual echo 3D gradient 

sequence with breath-hold to collect the 3D anatomical 

structure and B0 field map of the cardiac 

 

regions. A stack of transverse slices acquired at the 

beginning of the study is used to establish the shimming 

currents that automatically adjust the field for subsequent 

scans. 

Compared with typical volume shimming, AI shim increased 

signal-to-noise ratio (SNR) in images obtained for all RV and 

LV myocardium cine planes. For instance, the mean SNR of 

LV myocardium SAX cine improved 17.75% with AI shim 

(p<0.001) among healthy volunteers and 10.40% (p=0.006) 

in referred patients. Similar findings were noted for 

contrast-to-noise (CNR) measurements. The improved SNR 

and CNR obtained through AI shim afforded better 

delineation of epicardial and endocardial borders, and the 

crisper AI shim images beneficially increased the efficiency 

and accuracy of automated contour detection algorithms 

utilized by the advanced CMR analysis software.  Image 

sharpness over all four cardiac planes increased (2%) by AI 

shim and the relatively small improvement was notable 

along the thin RV free wall four-chamber and short-axis 

views (Fig. 2). 

 

 

 

Figure 2. shows a three-chamber view example that highlights the superior image quality produced independent of the technologist with AI shim as compared to volume 

shim. The histograms also show the off-resonance distributions of the whole heart in the B0 field obtained with scans from 10 volunteers using two shimming methods: 

manual volume shim vs. AI shim. Histograms were separately generated for each cardiac plane with the standard deviation within the mask region, representing an improved 

field homogeneity with automated AI shim. 

4. Fast-SENC 

Fast-SENC Cardiac MR software operates efficiently on the 

United Imaging MRI scanner enabled by accelerated spiral k-

space data acquisition. Fast-SENC technology is a rapid MRI 

scanning diagnostic feature that measures myocardium 

deformation from an unwound to a tense or contracted 

condition in one heartbeat per image plane. Breath-holds 

 

 

 

 are not required, and a complete view of the ventricle is 

acquired in 6 seconds. This specialized pulse sequence 

reflects changes in the material properties cardiac muscle 

that can be harbingers of impending decreased contractility 

(Ejection Fraction, EF) [15-17]. The Fast-SENC pulse 

sequence quantifies circumferential (GCS) and longitudinal  

 

 

 

                  

3Not commercially available in the U.S. and some other countries for clinical use; sequence is still a work in progress. 
 

https://radiopaedia.org/articles/myocardium?lang=us
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(GLS) strain, varying with the plane of measurement, the 

latter being most utilized by cardiologists today (Fig. 3). The 

Fast-SENC has advantages of greater signal to noise ratio 

and more accurate strain calculation. 

 

 

 

Figure 3. shows CMR results in a 84 year old patient with history of transthyretin amyloidosis in the spine. Ejection fraction was noted to be 63% in 2020 and had dropped 

slightly to 56% in 2021. The LV global longitudinal strain was noted to be 10% and 9% in 2021. The mapping shown below also helps to highlight the progression of myocardial 

involvement from the anterior, septal and posterior basal walls in 2020 to include more widespread left ventricular myocardial involvement in 2021. 

 

5. Strain 

Feature Feature-tracking (FT) [18] has been described as an 

alternative means of measuring myocardial strain using 

clinically routine cine CMR images, which require no special 

sequences such as tagging with DENSE or Fast-SENC [19-21]. 

Considerable effort has been focused on increasing the 

accuracy and reproducibility of FT strain assessment, but 

the process still requires human intervention. Moreover, 

performance and reproducibility of FT is directly related to 

observer's experience.  

United Imaging Intelligence has created a deep-learning-

based fully automated myocardium strain assessment 

system4 (autoFT™, Fig. 4) that provides global and segmental 

strain estimates directly from cine CMR images without any 

human intervention, thereby removing observer variation or 

bias. The system was validated on patient data and 

compared to fast-strain-encoded (fast-SENC) imaging [22].  

 

A neural network was established and trained to classify 

and group standard DICOM MRI images into short axis 

stacks, 2-chamber, 3-chamber and 4-chamber long axis 

images for assessment of cardiac anatomy and function. No 

additional MRI images are required. A convolutional neural 

network (UNet-like NN) detects anatomical landmarks on 

images to define and segment the myocardium according to 

the American Heart Association 17-segment model. A 

motion-pyramid NN is implemented to predict the dense 

motion field between two consecutive images. The motion 

tracking network is also equipped with anatomy-awareness 

such that the dense motion field from the network can 

maintain the heart anatomy through tracking [23]. Manual 

editing of the tracking is allowed at any frame to adjust the 

estimated motion and update the strain correspondingly. 

The myocardium, defined by the segmentation mask on the 

end-diastolic frame, is densely tracked through the entire 

cardiac cycle. Pixel-wise strains are calculated from the  

 

          

         

4This product is a work in progress; the information in this article represents ongoing research and development. No 510k application has been filed with the FDA. This 
product is not available for sale in the U.S. for clinical uses and also may not be available for such sales in other countries. 
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dense motion field. Strain values along different directions 

(circumferential, radial and longitudinal) and at multiple 

spatial resolutions (global, segmental and pixel-wise) are 

provided in various formats, such as table, curves and 

bullseye.  

 

  

 

Figure 4. describes the workflow of the fully automated cardiac strain and function analyses. 

 

The main components of this FT method include 

segmentation and motion tracking, which leverage the 

recent progress in computer vision and deep learning to 

achieve high accuracy, robustness, and computation speed. 

Repeatable preliminary results in serial studies have been 

obtained, in part because the short acquisition times 

minimize patient motion variability.  

 

6. T1/T2 Mapping 

MRI myocardial texture characterization using native T1 and 

T2 relaxation times can provide insight into changes in  

cardiac tissue. The normal practice of quantifying early  

changes in T1 and T2 parameters compares a subsampled 

region-of-interest (ROI) from the colorized T1 and T2 

relaxation time maps with a ROI from chest wall muscle; the 

ratio of the magnetic parameter relaxation times 

determines the clinical significance. However, the technique 

is fraught with clinical variability and can be time-consuming 

to perform [24-25]. In the next edition of uINNOVATION-

GLOBAL, a novel T1/T2 mapping feature re-envisions T1 and 

T2 relaxation data (Fig. 5) maps as automatic and intuitive 

quantitative reports. 
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Figure 5. illustrates T1/T2 mapping of the cardiac myocardium. 

 

7. Conclusion 

CMR scans performed using the above-mentioned 

intelligent features are simplifying cardiac planning and 

image quality, decreasing the time for data processing and 

enhancing data interpretation. Collectively, the use of AI to 

achieve simpler and faster workflows will expand 

institutional availability, minimize technical complexity, and 

provide the best information for optimal patient care 

regardless of center location or size. 

 

8. Image/Figure Courtesy 

All images are the courtesy of Washington University School 

of Medicine in St Louis, USA. 
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Expert interview: Exploring the past, present, and future of total-body 
PET with Dr. Simon R. Cherry1

E: Dr. Cherry, thank you for joining us today to talk about 

your experience with total-body PET. Before we continue, 

we’d like to first congratulate you for winning the 2022 
Benedict Cassen Prize from the Society of Nuclear 

Medicine and Molecular Imaging (SNMMI). We especially 

enjoyed your lecture titled “A Matter of Time” which 
showcased the development of PET over the years. 

S: Thank you very much! 

 

E: You have mentioned in your lecture, as well as in many 

of your past presentations, that the idea of total-body PET 

for adult human imaging is not new and can be dated 

back to 1990 when Dr. Terry Jones proposed the concept 

using parallel large detector panels. Can you please speak 

a bit about your early involvement in total-body PET and 

why you and Dr. Ramsey Badawi decided to pursue this 

concept? 

S: That is a good question – if my memory serves me 

correctly, this all started about 18 years ago. At the time, the 

Department of Radiology at UC Davis was looking to hire 

someone well-versed in nuclear medicine physics. At the 

time I had no real connection with Radiology as my 

appointment was in the Department of Biomedical 

Engineering. However, I had known Ramsey from the time 

he was a graduate student at the University of London, and I 

was very pleased when Radiology recruited him to UC Davis. 

Naturally, Ramsey and I quickly began chatting about 

research projects that we could collaborate on. Ramsey had 

done a lot of simulation work on longer axial field of view 

(FOV) PET systems up to 60 cm and studied effects such as 

random and scatter coincidences because the general 

consensus at the time was that the longer axial FOV PET 

systems would be dominated with these types of 

coincidence events, and therefore the idea would not be 

worth pursuing. 

 

 

 

Ramsey’s simulations on longer axial FOV PET systems 
showed that the effects of scatter and random coincidences 

did not grow as quickly as one might expect. Given Ramsey’s 
interests in this phenomenon and my experience in 

preclinical instrumentation which already had relatively 

large axial FOV capable of covering an entire mouse, the 

conversation quite naturally turned to building longer axial 

FOV PET systems for human imaging. 

I recall having the conversation about how long the system 

should be. At the time, the state-of-the-art clinical PET 

system was about 20 cm long. I am not sure who said it first, 

but we decided if we were going to build a long axial FOV 

PET system, we should take it to the extreme because 

otherwise you would always be left wondering what would 

happen if you built a longer system. The ability to capture 

the entire human body and watch the radiotracer move 

across the human body with improved sensitivity struck us 

as an exciting challenge that had never been attempted 

before. I think both Ramsey and I like big ideas and we are 

not afraid to take on those challenges. Shortly after, the 

total-body PET idea was born. 

Looking back now I think we had no idea what the journey 

was going to be like. I would not have predicted that it 

would have taken so long. At the same time, I do not think I 

would have predicted that it would have been so successful 

either. So far, I have been very happy with what has 

transpired. 

 

E: As many people know, the EXPLORER total-body PET 

system (now known as the uEXPLORER® system) was born 

out of a collaboration with United Imaging Healthcare. 

Can you please talk a bit about why you and Dr. Badawi 

decided to collaborate with a medical imaging device 

manufacturer? What are some advantages you saw with 

such collaborations compared to developing the system 

entirely in-house at UC Davis? 

 

 

 
1The University of California, Davis (UC Davis) receives financial support from United Imaging Healthcare through a sponsored research agreement, in which Dr. Cherry is 
a principal investigator, and has a revenue-sharing license agreement with the company for jointly developed technology.  

 

https://ieeexplore.ieee.org/abstract/document/842848
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S: After we were awarded the $15.5 M transformative R01 

grant from the National Institutes of Health in 2015, we 

quickly recognized that even though we had the funding, 

from the academic side we had little expertise or experience 

in building a PET system on an industrial scale. At the same 

time, we also realized we were going to receive a lot of 

attention due to the amount of funding we were awarded 

for this project. As many have experienced, academic 

projects can sometimes take longer than expected; and 

while the prototypes can produce images, they may not be 

stable or robust enough for routine clinical use. Therefore, 

we wanted to use the funding in a way that would lead to a 

lasting change in the field. 

From the beginning, we were aware of the massive 

responsibility and that it was essential to collaborate with an 

industry partner. In fact, we have discussed the total-body 

PET idea with multiple companies even before we received 

the award. However, the response from industry at the time 

was generally lukewarm as they did not see a clear market 

need and were heavily invested in PET/MR technology at 

that time. 

With that said, our first exposure to United Imaging 

Healthcare was at the IEEE Medical Imaging Conference in 

late 2015 where we met Dr. Hongdi Li (CTO of United 

Imaging Healthcare). I remember sitting down with him, and 

Hongdi was rapidly sketching ideas on the back of a napkin. 

He already had ideas about how to build a total-body PET 

scanner with United Imaging Healthcare technology and he 

offered to come to UC Davis to give a detailed presentation 

on how United Imaging Healthcare could help with the 

project within a couple of weeks, which he did. While we 

were impressed with his proposal, we did not know much 

about the company other than Hongdi. He then invited us 

to visit the United Imaging Healthcare headquarters in 

Shanghai several weeks later in January 2016. That was the 

pivotal point for us; in only 8 hours our perception of the 

company completely transformed despite its relatively 

young age. Although we had our doubts before visiting, 

after we toured the facilities and met the people we knew 

that we would move forward with United Imaging 

Healthcare, because we had found a team with the same 

mindset we had. I remember well that at the end of our visit, 

Min Xue, President of United Imaging Healthcare said “if you 
want to do this project with us, we will do it and we will do it 

well,” and with those words and a handshake, the 

partnership was born. Total-body PET was an ambitious and 

difficult project, but it was worth doing. It was high risk, but 

United Imaging Healthcare leadership was willing to take 

the risk. They trusted and believed in us, and we trusted and 

believed in them, and it has worked out extremely well. 

 

E: The term “total-body PET” has seen increased usage in 
the literature since the EXPLORER project was funded in 

2015. Can you please talk about why you used the term 

“total-body PET” instead of the more common “whole-

body” PET? What are the differences between the two? 

S: The term “whole-body PET” has been in widespread use 
for a long time, and it typically refers to an eyes-to-thighs 

scan performed by stepping the patient through a 

conventional PET system in multiple bed positions. We 

needed a distinct terminology to denote the fact that we are 

not moving the bed and we are capturing the entire human 

body at once, and hence we created the term “total-body 

PET” to distinguish itself from “whole-body PET.” The key 
distinction here is that “total-body PET” allows us to capture 
the kinetics across all tissues in the body by imaging the 

entire human simultaneously without moving the bed. 

Capturing kinetics across the entire human is very difficult 

and inefficient to achieve with “whole-body PET,” especially 
when imaging radiotracers with faster kinetics. 

 

E: Prior to the installation of the uEXPLORER system at UC 

Davis, you mentioned that total-body PET provides 

improved tradeoffs between scan time, radiation dose, 

and image quality. Having been the users of the first 

clinical total-body PET system in the world since 2019, 

what are some additional advantages of total-body PET 

that you and Dr. Badawi have realized? 

S: Given the extensive amount of simulations we have 

previously performed, we had very high expectations for 

total-body PET and were not surprised by the image quality 

improvement achieved with the higher system sensitivity. 

However, after seeing the first images, we were amazed by 

the clarity and sharpness which were achieved with both 

high sensitivity and fine spatial resolution without the need 

to apply smoothing filters. In addition to the first dynamic 

total-body PET movie showing the radiotracer moving 

across the entire body, the ability to perform dynamic PET 

imaging of the entire body using 0.1 s time frames (which 

https://iopscience.iop.org/article/10.1088/0031-9155/57/13/4077
https://usa.united-imaging.com/products/molecular-imaging/uexplorer/
https://www.youtube.com/watch?v=JaszDkmgfMY
https://www.youtube.com/watch?v=JaszDkmgfMY
https://www.pnas.org/doi/10.1073/pnas.1917379117
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has never been done before) and visualizing the cardiac 

cycle via PET was mind-blowing and eye opening. 

 

E: What are some of the latest research projects you and 

Dr. Badawi are working on that were made possible using 

the uEXPLORER system? 

S: One of the projects that we are involved in is the total-

body imaging of CD8+ T cells for COVID-19 using 89Zr-Df-

Crefmirlimab-Berdoxam. This radiotracer has been used in 

cancer patients for immunotherapy, and the resulting 

radiation dose given to the patients, while justifiable, can be 

quite high. To use the same radiotracer to assess COVID-19 

in recovering patients as well as in control groups (i.e., 

healthy volunteers), it is essential to utilize a PET system 

that can minimize the radiation dose administered to the 

patient. 

To the best of my knowledge, we are currently the only 

people that have 89Zr-radiolabled human imaging data with 

a control baseline from healthy human volunteers. This is 

because total-body PET is a necessity for imaging 89Zr at 

greatly reduced injected radioactivity levels. The imaging of 
89Zr-radiolabled control groups would not have been 

possible without total-body PET systems. Also, with regards 

to the immune system, there are many chronic diseases 

where there may be value in scanning multiple time points 

(at 20 y/o, 30 y/o, 40 y/o, etc.) and performing interventional 

studies (e.g., before and after vaccination). These are new 

considerations that would not have previously been feasible 

without the large dose reduction enabled by total-body PET. 

As always, we want to develop better and better next-

generation PET systems to enable more novel clinical and 

research imaging applications. I hope this is just the 

beginning for these kinds of high-end PET systems, and I 

hope the field continues to push towards developing better 

systems in the future because we still have some ways to go. 

 

E: When it comes to PET scanner performance, often the 

most discussed performance parameters are 1) 

sensitivity, 2) spatial resolution, 3) count rate 

performance, and 4) time of flight (TOF) performance. 

How would you rank the importance of each of these 

parameters to ensure the future success of total-body 

PET? 

S: This is a difficult question – there needs to be a balance 

to a certain extent, because otherwise the PET system 

would be limited by its weakest link. Care must be taken to 

not overemphasize one performance metric over the other. 

There is no point in having spatial resolution if there are 

insufficient counts to support the spatial resolution, for 

example. The other way around is also sub-optimal – if 

there are tons of counts but the detectors have coarser 

spatial resolution, the annihilation photons are not being 

fully utilized. If there is excessive deadtime, there can be a 

problem with count rate performance. So, these metrics are 

all linked to each other. 

Therefore, I am going to answer the question a bit 

differently and ask “Where would I put my efforts in going 
beyond the current total-body PET systems? Where can we 

improve further?” Obviously, TOF performance is an area 
where we can do better, and so I think in the next few years 

it is not unreasonable for current PET detector technology 

to reach 100 – 150 ps TOF resolution. Challenging for sure – 

but I am confident that there is a way to get there. Of 

course, we would like to go down to well below 100 ps, but 

that is going to require some technological advancements 

which will take a bit longer.  

I think another area to emphasize is “How do we deal with 
Compton scattering within the detector?” When comparing 
the measured sensitivity of a detector versus the predicted 

sensitivity based on the stopping power and thickness of 

the scintillator, the measured sensitivity is often much 

lower. The reason is that a lot of those Compton scattered 

photons are rejected since they are captured outside the 

photopeak energy window, and the detector efficiency is 

much lower as a result. We need to have detectors that are 

thick enough so that all of the energy gets absorbed; 

however at the same time there needs to be a way to 

determine the energy and the location of each interaction to 

best determine the first interaction among multiple 

interactions. So, I think this is another area to improve – 

perhaps one that is not mentioned very much because it is 

a little bit more of a subtle effect. 

One thing of note is that we are not going to be able to 

make much more improvements in geometric coverage. The 

uEXPLORER system is the epitome of ultra-high geometric 

efficiency, so little sensitivity improvement can be gained 

from extending the system beyond 2 m. 

Finally, I think we need to continue searching for new 

https://jnm.snmjournals.org/content/63/supplement_2/2327
https://jnm.snmjournals.org/content/63/supplement_2/2327
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scintillator materials. If we can get materials with better 

photoelectric cross sections, then we can get fewer events 

where inter-crystal scattering occurs. While BGO is better 

than LYSO in terms of photoelectric cross section, we do not 

yet have a robust way to obtain timing resolution down to 

below 100 ps. However, there are other materials that are in 

the early stages of development that have very good 

photoelectric cross sections and can be very fast, so we 

need to see effort and funding going into these materials. It 

took a good decade of development for LSO and LYSO to 

get to a point where it is usable for a PET system, and it will 

likely take a similar number of years for some of these new 

materials. 

 

E: One of the advantages of PET systems with increasing 

axial FOV is the increasing axial coverage with uniform 

sensitivity. With the uEXPLORER system the axial length 

with uniform sensitivity is about 1 m. Can you speak a bit 

about the advantage of having uniform sensitivity axially? 

Are there any advantages to further extending the PET 

axial FOV beyond 2 m so that the axial length with 

uniform sensitivity covers the entire adult human? 

S: Good question – of course, there is a lot of debate about 

the optimal axial length of a total-body PET system. 

Proponents for the shorter axial length total-body PET 

systems suggest that only the major vital organs (e.g., from 

the brain to the pelvis) must be covered and not the lower 

limbs. If that is the goal, then a system that is slightly over 1 

m should suffice for most adult humans. However, to have 

ultra-high and uniform sensitivity across that entire 1 m 

region, the system needs to be considerably longer than 1 

m due to its geometric response. Otherwise, the sensitivity 

at the first few cm of either end of the system (where the 

brain and pelvic regions are located at) is no better than 

that of a conventional PET system. So, I think a total-body 

PET system needs to be least 1.4 – 1.5 m to have ultra-high 

and uniform sensitivity across all the major organs of the 

body. 

Of course, it is a bit more complicated than that – as you 

accept more oblique lines of response, then those lines get 

more heavily attenuated. This leads to more scattered 

photons because they travel a much longer path length 

through the body. So, while for point sources one can 

continue to benefit from sensitivity gains as the axial length 

increases, the gain is not as dramatic when imaging adult 

humans. So, while the minimum length required I would 

suggest is 1.4 – 1.5 m, the optimal length beyond that 

depends on the intended application, because there are 

applications where there is a need to image beyond the 1 m 

“high sensitivity” region. Some examples of our own 
research projects requiring high sensitivity information 

outside the 1 m region include the assessment of 

rheumatoid arthritis where there is a need to survey all the 

joints in the body simultaneously, and where disease is 

present in the wrists, ankles, and the feet as well. So, if the 

goal is to survey all of that, and knowing the radiotracer 

uptake is not very high in these small structures, having a 

system with ultra-high sensitivity is essential. In such 

scenarios, a 2 m system will really help. 

Another example is our T cell study in COVID-19 subjects. As 

many people know, one of the production sites of T cells is 

the bone marrow. There is lots of bone marrow in the long 

bones of the leg, and we have seen quite some differences 

in radiotracer uptake between human subjects in our 

studies. This is another case where there is a need to extend 

the axial coverage beyond the pelvis and into the legs while 

minimizing the radiation dose given to the human subjects 

by taking advantage of the ultra-high sensitivity of total-

body PET. 

So, if I want to have a high-end PET system that is also a 

high-end research instrument to support all types of 

research related to systems medicine, the human 

connectome, and the immune system, then I want to have a 

scanner that can see the entire body with ultra-high 

sensitivity, and that pushes me much closer to having a 2 m 

system. The optimal length may very well turn out to be a 

different number if the intended application of the PET 

system is only for routine clinical use, such as FDG clinical 

oncology. On the other hand, if the goal is to develop new 

clinical indications by understanding the processes and 

treatment effects using systems such as the uEXPLORER, I 

think we want the best instrument we can get. 

It is a long answer – it is not a question that has a single 

correct answer, but I am very glad we are able to get the 

uEXPLORER system built to the length that it is because it 

shows us what is possible and allows us to do things that we 

could not do otherwise. 
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E: The current NEMA NU 2-2018 standard for evaluating 

the performance of clinical PET systems using phantoms 

with lengths of 70 cm or less is not designed to evaluate 

PET systems with axial FOV greater than 65 cm. As a 

result, longer phantoms have been used at UC Davis to 

better reflect the actual performance of total-body PET 

systems when imaging adult humans. Do you think that 

the next NEMA NU 2 standard should include tests 

appropriate for evaluating total-body PET systems? Is 

there a need to revise the standard so that the tests are 

suitable for clinical PET systems of all lengths? 

S: I think the next NEMA NU 2 standard needs to account for 

total-body PET systems since the current measurements do 

not fully reflect the real-world performance of these 

systems. Although one of the approaches to address this 

concern is to image longer phantoms, the process is not a 

simple undertaking – long phantoms can be heavy and 

difficult to fill, which is a resource intensive process. 

Therefore, the challenge for the NEMA committee and for 

those who are trying to contribute is “How do we come up 
with a meaningful set of measurement that is also practical 

to do?” I do not think there is an easy answer for that 
currently, but certainly the standard needs to be revised to 

account for the new class of systems so one can fairly 

assess their performance in comparison to shorter systems. 

Ideally, rather than developing a new NEMA standard for 

long axial FOV systems, there would be an integrated 

standard that works for any length of scanner. It will be 

interesting to see where that discussion goes and what 

ideas people come up with. 

The other thing that is not properly captured with the 

current NEMA measurement is the impact of different TOF 

performance on the resulting reconstructed images, and 

that also needs to be considered in the new NEMA standard 

now that we have scanners with considerably better TOF. 

One could assume that TOF is going to get better and better 

in the coming generations of scanners, so we need to be 

ready for that. 

 

E: Where are we going with total-body PET in the next 5 to 

10 years? How can a medical device manufacturer help 

facilitate this process with academic researchers from 

both a scientific and logistical standpoint? 

S: People may disagree with me on this – I think that it is not 

so challenging to operate total-body PET systems in the 

current clinical environment. At the same time, I feel that we 

are not using PET in the most quantitative way possible in 

the clinic – we are still largely using semi-quantitative 

metrics such as SUVmax! Therefore, my hope for the 

manufacturers is that they will recognize the opportunities 

and potential for PET to be an accurate measurement 

device for biomedical research, which means that the 

system must be precise and accurate over a massive 

dynamic range. Of course, while it is essential to achieve 

accurate quantification, it is not a trivial task. 

Tomorrow’s research will lead to future clinical applications. 
Once we can prove that we can accurately measure small 

changes in the human body, then perhaps later the semi-

quantitative metrics can eventually be utilized in the clinic. If 

we consider the history of 2-Deoxy-D-glucose research, 

which began as a quantitative research tool in animals and 

certainly long before anyone considered its clinical role – I 

think we are going to need to do the same kind of deep 

investigation on new radiotracers to better quantify them 

and unveil their potential for future clinical applications. 

Total-body PET is going to be the measurement tool that I 

believe we are going to need; however, we must view it also 

as a scientific instrument, not simply a producer of pretty 

pictures. Too many people are only talking about its clinical 

role – about “Let’s make it a little bit cheaper” or “Let’s get 
the dose down” or “Let’s make it a bit quicker.” That is not 
changing the field, and we will never change the world that 

way. 

 

E: Finally, what do you think the ultimate PET scanner 

would look like and when will it be developed? 

S: As I have mentioned in the Cassen Lecture at the 2022 

SNMMI meeting, I think the ultimate scanner will not require 

image reconstruction once the TOF resolution reaches 20 – 

30 ps. This will create new possibilities for all kinds of novel 

system geometries and correspondingly detector usage 

because we will not be restricted by the traditional radial 

and angular sampling framework anymore. The systems 

may also be more patient friendly as well. 

While we are on our way to developing the ultimate 

scanner, there are still a few things we need to first solve. 

One of the problems that stands out to me is motion. Even 

if we can make our scanner extremely quantitatively 

https://jnm.snmjournals.org/content/62/6/861
https://www.youtube.com/watch?v=oLm-6QbSA3Y
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accurate and get the best quality information possible from 

our data, the data is no good if the patient moves and we do 

not know where the motion comes from. Therefore, we 

need to find a robust way to measure and correct for 

motion of all types. I think motion correction is one of the 

greatest methodological challenges that will also take a long 

time to solve, but ultimately, I think motion artifacts can be 

drastically reduced. Thus, while developing the next 

generation of PET scanners, the software piece is critical as 

well. 

As we approach the limit where every count is carrying the 

maximum information possible, if we keep the detector 

efficiency high and detect as many photons as possible, we 

will be close to doing as well as we can. The technology that 

will enable us to do this is not available yet – there are 

several ideas for how to get there, and I think the answer to 

“When will we get there?” is: 

“It’s just a matter of time.”  

 

E: With that, Dr. Cherry, thank you very much again for 

your time and I hope you enjoyed exploring the past, 

present, and future of total-body PET with us! 

S: My pleasure. 
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Abstract 
HYPER Iterative (Regularized OSEM), uAI® HYPER DLR (Deep 

Learning Reconstruction), and uAI® HYPER DPR (Deep 

Progressive Reconstruction) are advanced PET image 

reconstruction algorithms that have recently been 

introduced into clinical practice in Japan. We systematically 

determined the performance of these algorithms by 

measuring various indices of image quality and quantitative 

accuracy according to the Japanese Society of Nuclear 

Medicine (JSNM) guidelines derived from images acquired 

using a uMI® 550 PET/CT system (United Imaging 

Healthcare, Shanghai, China). The image quality index (QH,10 

mm/N10 mm) obtained using HYPER Iterative, DLR and DPR 

satisfied the JSNM criterion of ≥ 2.5. The QH,10 mm/N10 mm 

value for HYPER DPR with Enhance2 containing non-local 

mean and Metz filters as a postfiltering option was 11.5, 

which was the best among the evaluated reconstruction 

methods. Sphere detectability, on the other hand, was 

better with HYPER DPR than with the other reconstruction 

methods assessed. Quantitation of 10 mm spheres was 

improved with HYPER Iterative, DLR and DPR compared to 

OSEM. Overall, our results showed that the advanced image 

reconstruction algorithms can improve image quality and 

quantitative accuracy (particularly in 10 mm spheres), 

compared with OSEM-based reconstruction methods which 

may improve detectability of smaller lesions. HYPER DPR 

reduced noise, improved image contrast, and enhanced PET 

image quantitation.  

 

 

1. Background 

Positron emission tomography/computed tomography 

(PET/CT) using 18F-fluoro-2-deoxy-D-glucose (FDG) has 

become an essential tool for diagnosing and staging cancer. 

Furthermore, PET/CT imaging is becoming more important 

as a means of providing quantitative biomarkers for 

monitoring therapeutic responses and evaluating new drug 

therapies. However, PET image quality and quantitative 

accuracy can be sensitive to various factors such as imaging 

protocols, PET scanner specifications, reconstruction 

methods and parameters [1]. The Japanese Society of 

Nuclear Medicine (JSNM) has published standard PET 

imaging protocols together with phantom test procedures 

and criteria for oncological PET imaging using FDG. The 

executive summary is available on the JSNM website 

(http://jsnm.org/archives/3071/). The JSNM standards for 

image quality and quantitative accuracy are regularly 

updated to account for advancements in hardware and 

software performance of PET scanners to ensure 

harmonization of various scanner models, which can 

improve the robustness of multicenter studies. 

The JSNM has recently published new standards for 

oncological FDG PET studies based on phantom data 

obtained from 23 PET/CT scanners primarily reconstructed 

using ordered subset expectation maximization (OSEM)-

based reconstruction methods [2]. However, the image 

reconstruction results using the latest clinically available 

advanced image reconstruction algorithms – including  

 

 
1Kenta Miwa and Tensho Yamao received financial funding through a sponsored research agreement between Fukushima Medical University and United Imaging Healthcare 
Japan. 
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HYPER Iterative (Regularized OSEM), and deep-learning (DL)-

based methods such as uAI® HYPER DLR (Deep Learning 

Reconstruction) and uAI® HYPER DPR (Deep Progressive 

Reconstruction) were not included. Therefore, we 

systematically performed qualitative and quantitative 

evaluations of PET image reconstructions using these 

algorithms according to the JSNM phantom test guidelines. 

 

2. Materials and Methods 

2.1 PET/CT scanner 

All PET data were acquired using a uMI® 550 PET/CT system 

(United Imaging Healthcare, Shanghai, China). The system is 

comprised of a PET scanner coupled to an 80-slice CT 

scanner. One detector block of the PET scanner is 

comprised of a 7 × 6 LYSO array of 2.76 × 2.76 × 16.3 mm3 

crystals coupled to silicon photomultiplier (SiPM) sensors. 

The uMI 550 has axial and transaxial fields of view (FOV) of 

24 and 70 cm, respectively. The time-of-flight (TOF) timing 

resolution is 395 ps. The spatial resolution and sensitivity of 

the uMI 550 according to National Electrical Manufacturers 

Association (NEMA) NU 2-2018 standard are 2.95 mm/2.97 

mm (transverse/axial) at 10 mm off center and 10.3 

cps/kBq, respectively [3]. 

 

2.2 Phantom experiments 

Phantom data were acquired according to the JSNM 

phantom test procedures [4]. We used a NEMA body 

phantom comprising six spheres with diameters of 10, 13, 

17, 22, 28, and 37 mm. The sphere-to-background activity 

ratio (SBR) in the phantom was 4:1 with a background 

activity concentration of 2.53 kBq/mL. 

 

2.3 Data acquisition and image reconstruction 

We acquired PET images in three-dimensional list mode for 

30 min and reconstructed them using OSEM + point spread 

function (PSF) + time-of-flight (TOF) (3 iterations; 20 subsets; 

postfilter, non-local mean and Gaussian filter 6 mm), HYPER 

Iterative (β values of 0.01, 0.07, 0.14, 0.21, 0.28, 0.35, 0.42, 
0.49, 0.56, 0.63, 0.7, 0.77, 0.84, 0.91, and 0.98; PSF+TOF, on), 

HYPER DLR (2 iterations; 20 subsets; postfilter, combined 

non-local means, Gaussian and Metz filters, 4 mm; PSF+TOF, 

on), and HYPER DPR (smoothing strength, 1–5 (Smooth to 

Sharp); postfilter; combined non-local means; Gaussians 

and Metz filters, 4 mm; PSF+TOF, on). The reconstruction 

parameters for each algorithm were chosen to account for 

differences in convergence speeds to ensure that the 

algorithms were compared under optimal conditions, 

similar to our previous studies. The parameters for OSEM 

were derived from the existing clinical protocol at Fujita 

Health University Hospital; the parameters for HYPER DLR 

were based on the work performed by Xing et al. [5]; and 

the same Gaussian filter was used for both HYPER DLR and 

HYPER DPR for direct comparisons. Images were 

reconstructed in a 256 × 256 matrix, with a slice thickness of 

2.68 mm. Data acquired in 30 min list mode were re-binned 

into acquisition durations of 2 and 10 min. All standard data 

corrections were applied. 

 

2.4 Image analyses 

We assessed image quality by evaluating the contrast of the 

10 mm hot sphere and background variability on PET 

images acquired for 2 min using PMOD software version 

3.8. A circular ROI was placed on the 10 mm sphere on an 

axial slice of the sphere center. We also placed twelve 10 

mm diameter circular ROIs on the background on a slice of 

the sphere center and on slices ± 1 cm and ± 2 cm away 

from the center slice (60 ROIs total). The percent contrast (% 

contrast) for the 10 mm hot sphere (QH,10 mm) was calculated 

as: 

𝑄𝐻,10 𝑚𝑚  =  𝐶𝐻,10 𝑚𝑚 𝐶𝐵,10 𝑚𝑚⁄  − 1𝑎𝐻 𝑎𝐵⁄  − 1  ×  100 (%),          
where CH,10 mm and CB,10 mm are the average activity 

concentration in the ROI for the 10 mm sphere and in the 

background 10 mm diameter ROIs, respectively, and aH∕aB 

is the known activity concentration ratio between the hot 

spheres and the background. The percent background 

variability (N10 mm) for the 10 mm circular ROIs was 

calculated as:   𝑁10 𝑚𝑚  =  𝑆𝐷10 𝑚𝑚𝐶𝐵,10 𝑚𝑚  ×  100 (%), and 

𝑆𝐷10 𝑚𝑚  =  √∑ (𝐶𝐵,10 𝑚𝑚,𝑘  −  𝐶𝐵,10 𝑚𝑚)2𝐾𝑘=1 𝐾 − 1 , 𝐾 = 60, 
where SD10 mm is the standard deviation of the mean activity 

concentration for the 60 background ROIs.  

We assessed the quantitative accuracy of the data by 

measuring the mean standardized uptake value (SUVmean), 
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the relative recovery coefficient (RC) for the hot spheres, 

and the average SUV in the background (SUVB,ave) on PET 

images acquired for 10 min. 

 

3. Results 

Figure 1 shows the % contrast, background variability, and 

image quality index (QH,10 mm/ N10 mm) as a function of the β 
value in PET images reconstructed using HYPER Iterative. 

The % contrast increased as the β value decreased. The % 

contrast was higher than that of OSEM + PSF + TOF at 

ranges of β = 0.01–0.70. Background variability decreased as 

the β value increased and was lower than that in OSEM + 
PSF + TOF when β = 0.63–0.98. The image quality index 

(QH,10 mm/N10 mm) from HYPER Iterative satisfied the JSNM 

criterion of ≥ 2.5. The QH,10 mm/N10 mm value reached 

maximum at β = 0.63, then decreased as a function of 
increasing β values. 

 

 

Figure 1. Percent contrast (QH,10 mm), background variability (N10 mm), and image quality index (QH,10 mm/ N10 mm) as a function of β in PET images reconstructed using HYPER 
Iterative. The dotted line represents the reference standards for the JSNM image quality acceptance. OSEM represents OSEM + PSF + TOF. 

 

Figure 2 shows the % contrast, background variability, and 

image quality index (QH,10 mm/N10 mm) with various postfilter 

options in PET images reconstructed using HYPER DLR. 

The % contrast in DLR was lower than that in OSEM + PSF + 

TOF without a postfilter. On the other hand, % contrast in 

DLR was almost identical to that in OSEM + PSF + TOF with a 

postfilter containing a non-local mean filter. The 

background variability was lower in DLR than in OSEM + PSF 

+ TOF. Regardless, the image quality index (QH,10 mm/N10 mm) 

in DLR satisfied the JSNM criterion for all configurations. The 

QH,10 mm/N10 mm values for DLR with Smooth1, Smooth3, and 

Enhance2 containing the non-local mean filter were higher 

than those of OSEM + PSF + TOF. The QH,10 mm/N10 mm value 

for DLR with Enhance2 was maximal among all 

configurations. 
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Figure 2. Percent contrast, background variability, and quality index (QH,10 mm/N10 mm) of PET images reconstructed using HYPER DLR with various postfilter options. The dotted 

line represents the reference standards for the JSNM image quality acceptance. OSEM represents OSEM + PSF + TOF; none represents no postfilter. 

 

Figure 3 shows the % contrast, background variability, and 

image quality index (QH,10 mm/N10 mm) with different 

smoothing strength and postfilter options in PET images 

reconstructed using HYPER DPR. The % contrast and 

background variability in DPR increased with increasing 

smoothing strength. The % contrast and background 

variability tended to be lower in DPR with Smooth2 and 

Smooth3 with a Gaussian filter, than in other postfilter 

options. The image quality index (QH,10 mm/N10 mm) in DPR 

satisfied the JSNM criterion. The QH,10 mm/N10 mm values for 

DPR under all conditions were better than those for OSEM + 

PSF + TOF. The QH,10 mm/N10 mm values for DPR with Smooth1, 

Smooth3, and Enhance2 with a non-local mean filter were 

substantially better than those with other postfilter options. 

The QH,10 mm/N10 mm value for DPR with Enhance2 was 

maximal among all configurations. 
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Figure 3. Percent contrast, background variability, and image quality index (QH,10 mm/N10 mm) with different smoothing strength and postfilter options in DPR PET images. The 

dotted line represents the reference standards for the JSNM image quality acceptance. None represents no postfilter; OSEM represents OSEM + PSF + TOF; Str represents 

smoothing strength. 

 

Figure 4 shows the relationship between % contrast and 

background variability for all reconstructed algorithms. 

The % contrast was plotted as a function of the background 

variability of hot spheres with diameters of 10 mm. Thus, a 

choice was needed between increased % contrast and 

decreased background variability. Ideally, these points on 

the graph would lie in the top left of the figure [6,7]. The 

balance between contrast and image noise was better in 

this descending order: HYPER DPR, HYPER Iterative, HYPER 

DLR, and OSEM. 
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Figure 4. Relationship between % contrast and background variability for all reconstructed algorithms evaluated. OSEM represents OSEM + PSF + TOF. 

 

Figure 5 shows PET images acquired for 2 min and 

reconstructed using various methods. Statistical noise in 

PET images was more apparent when OSEM + PSF + TOF

was applied, but lower with HYPER DPR. Sphere detectability 

on PET images was visually better for HYPER DPR than the 

other types of algorithms evaluated. 

 

 
 

Figure 5. Examples of PET images reconstructed with OSEM +PSF +TOF (3 iterations; 20 subsets), HYPER Iterative (β = 0.63), HYPER DLR (Enhance2), and HYPER DPR 

(Strength1_Enhance2) acquired for the routine clinical duration of 2 min. The SBR was 4. All images are displayed as SUV on a scale of 0–4. 
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Figure 6 shows the SUVmean and RC of hot spheres on 

images acquired for 10 min and reconstructed using OSEM 

(3 iterations; 20 subsets), HYPER Iterative (β = 0.63), DLR 
(Enhance2), and DPR (Strength1_Enhance2). The SUVmean 

and RC differed considerably depending on the 

reconstruction method. Quantitation of 10 mm spheres was 

improved by HYPER Iterative, DLR and DPR. The tendency of 

sphere size dependence was similar among OSEM, HYPER 

DLR and HYPER DPR except for HYPER Iterative. The SUVB,ave 

of all reconstructions was within 0.95–1.05 (OSEM, 1.02; 

HYPER Iterative, 1.02–1.03; HYPER DLR, 1.02–1.03; HYPER 

DPR, 1.02–1.03). These results indicated that the scanner 

and reconstruction methods were appropriately calibrated, 

with quantitative accuracy within ± 5% error. 

 

 

 
 

Figure 6. Results of SUVmean and relative recovery coefficient of SUVmean of hot spheres on images reconstructed with OSEM +PSF +TOF (3 iterations; 20 subsets), HYPER 

Iterative (β value, 0.63), HYPER DLR (Enhance2), and HYPER DPR (Strength1_Enhance2). 

 

4. Conclusions 

Our phantom results showed that the advanced image 

reconstruction algorithms can improve image quality and 

quantitative accuracy compared with traditional OSEM-

based methods. In our evaluations, HYPER DPR reduced 

noise, improved image contrast, and enhanced PET image 

quantitation in 10 mm spheres, which may help improve 

detectability of smaller lesions. However, image quality and 

quantitation substantially differed according to the 

reconstruction parameters. The parameters of the new 

reconstruction methods may require optimization tailored 

to each institution and scanner, which will also be our next 

step. Further assessment using human data is needed to 

evaluate the performance of these advanced image 

reconstruction algorithms in various imaging scenarios. 

 

5. Image/Figure Courtesy 

All images are the courtesy of School of Health Sciences, 

Fukushima Medical University, Japan. 
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1. Introduction  

Ischemic cardiovascular disease has evolved to become the 

leading cause of morbidity. Despite effective treatments like 

statins and other preventive efforts, it has led to the loss of 

useful life years and global mortality. Cardiovascular disease 

is no longer confined to the developed world; it is also a 

problem for developing nations. Despite receiving the best 

possible care from modern interventional and pharmacologic 

therapies, 10% of acute coronary syndrome patients 

experience recurrent episodes during the first year (1). 

 

 

 
Figure 1. Curved and 3D reconstructions in a 32-year-old man who is a smoker with dyslipidaemia and comes with acute onset chest pain and a normal ECG, reveals a normal 

coronary arterial tree ruling out an acute coronary event. Scanning was performed on a uCT® 780 (United Imaging Healthcare, Shanghai, China) 160 slice CT scanner.

The CT Coronary Angiogram (CTCA) is the most advanced 

diagnostic armamentarium of tests for detecting and 

monitoring coronary artery disease. Patients with stable 

and unstable anginal symptoms benefit greatly from CTCA, 

which has a 99% sensitivity and 97% negative predictive 

value (2) for severe coronary artery disease (CAD) detection, 

shown in Figure 1. 
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The National Institute for Health and Care Excellence (NICE) 

provides independent evidence-based guidance for 

England's National Health Service. Its 2016 updated 

guideline for the assessment and diagnosis of recent onset 

chest pain or discomfort of suspected cardiac origin 
 

recommends CCTA as the first-line investigation for all 

patients with angina (or non-anginal pain but an abnormal 

electrocardiogram) and no prior CAD, with second-line 

functional imaging if the CCTA is equivocal (3) as shown in 

the Figure 2. 

 

 
Figure 2. A 63-year-old man with an aortic valve replacement done 10 years ago and no prior coronary artery disease comes with recent onset chest pain. The 

Echocardiogram showed a normal left ventricular function but a dilated ascending aorta. The ECG showed no new changes. CTCA reveals no stenosis in the left circumflex 

(LCx) artery and right coronary artery (RCA) (panels B and F). However, left anterior descending (LAD) shows a 90% ostial as well as two short more than 90% stenosis in the 

distal segments marked by arrows (panels C and CC). The venous phase run through the chest and abdomen after the CTCA with no additional intravenous contrast shows a 

dilated ascending aorta with no dissection, dilatation or stenosis in the rest of the aorta (Panels D and E). The patient was scanned on a uCT 780 (United Imaging Healthcare, 

Shanghai, China) 160 slice cardiac CT scanner. 

 

The SCOT-Heart Investigators trial was an open-label, 

multicenter, parallel-group trial that followed 4146 patients 

with stable chest pain for 3 to 7 years. The study showed 

that adding CCTA to standard care in patients with stable 

chest pain resulted in a significantly reduced rate of CAD or 

nonfatal MI at five years than standard care alone, without 

increasing the rate of coronary angiography or coronary 

revascularization (4) (Figure 3). 
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Figure 3. Panels A, B and C show CTCA in a 40-year-old lady with palpitations and chest pain. She was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 

slice cardiac CT scanner. ECG and Echocardiogram were normal. Despite a high heart rate of 140 beats/minute, the image quality we obtain was excellent. A mild to moderate 

stenosis was seen by calcified plaques in proximal LAD and LCx. She was managed medically. Panels D, E, F and G show a normal CTCA in a 49-year-old woman without any 

risk factors for coronary artery disease but with recurrent chest pain and an abnormal ECG with a borderline positive treadmill test. Chest pain from cardiac cause was ruled 

out. 

 

2. Recent improvements in CTCA 
hardware and software 

The clinical value of CTCA has continued to increase 

because of considerable developments in CT technology, 

software, and machine learning in recent years. Increasing 

gantry rotational rates enables imaging that was not 

achievable with older machine models. Iterative 

reconstruction techniques with improved temporal 

resolution for patients with high heart rate have been 

utilized to drastically lower the radiation dose to the patient 

without affecting the image quality. High, near-isotropic 

spatial resolution is also required for coronary artery 

imaging. The accuracy of CTCA is improved by using the 

advanced detector features a thin 0.5 mm element size that 

can fundamentally improve the spatial resolution. And the 

detector has a coverage of 4–16 cm in z direction which 

enables simultaneously acquiring imaging data of the entire 

heart in a single breath-hold. Such developments are 

underway and will undoubtedly increase the use of CTCA. 

(5) (Figure 4) 
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Figure 4. The LAD stent imaged in a higher version machine, the uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. Panel A shows remarkable 

clarity of the in-stent lumen as compared to the lower version machine study performed a few years earlier shown in Panel B. 

 

3. The usefulness of coronary artery 
calcium scoring (CACS) 

CACS is widely accessible, less complicated to operate (e.g., 

not depending on heart rate), does not need contrast, is less 

costly, and provides highly reproducible results. Although 

this test has been available for the past 20 years, there has 

recently been increased interest in its possible use of 

CACS in patients with low-risk symptomatic and the clinical 

importance of non-calcified plaque and stenosis in the 

absence of calcium. It has been shown that only 1 to 2% of 

symptomatic patients with CACS zero have potentially 

obstructive CAD, and only 0.4% of these patients have >70% 

stenosis. None of these patients will need coronary 

revascularization or have a bad prognosis within two years. 

(6) Patients with low and intermediate risk of CAD who 

appear with chest discomfort and have a normal 

Electrocardiogram, normal cardiac biomarkers, and a CACS 

of zero may be considered for early discharge without 

further screening in the emergency department (7). 

CACS has been shown to continue improving discrimination 

and risk revaluation for major CAD and CVD in community-

dwelling people who do not exhibit symptoms, even when 

Framingham risk factors are considered. It correctly 

reclassified two-thirds of the people in the Framingham 

Heart Study who were in the intermediate-risk group. Of 

those, 77% were moved down to low risk, and 23% were 

moved up to high risk (8). The ability to identify 

asymptomatic occult CAD in community residents who 

appear to be at low risk based on the Framingham risk 

scoring and to prevent CAD progression and incidents is a 

crucial addition of CACS. 

4. CTCA value in the emergency room 
(ER) 

Patients with low to intermediate-risk chest discomfort have 

found CTCA to be helpful in the ER. Those individuals without 

visible plaque can be discharged from the hospital 

immediately and securely. After a negative 6-hour troponin 

level, patients with non-obstructive plaque and mild to 

moderate stenosis can be discharged, whereas patients who 

have severe stenosis must be hospitalized to the hospital for 

further care (Figure 5). It has been determined that there are 

no fatalities or incidences of acute coronary syndrome 
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during the follow-up period. It has been demonstrated that 

patients without a CTCA have a greater rate of chest pain-

related rehospitalization. The average stay period is similarly 

shorter for patients having a CTCA (9). 

 

5. CTCA usefulness for percutaneous 
coronary interventions (PCI) 

More than 2cm long, over severely angulated segments, 

heavily calcified, across ostia or bifurcations, with uneven 

surfaces and adherent thrombi, past tortuous segments, or 

completely blocked coronary artery lesions are considered 

complicated and have limited effectiveness following 

stenting (10). Therefore, it is essential to recognize these 

lesions. Brett M. Wertman et al. (11) revealed that CTCA was 

able to recognize Type C complex lesions well, which was 

related with increased contrast use and procedure duration 

during PCI. (Figure 6) 

CTCA can differentiate angiographic TIMI grade 3 (normal) 

flow from TIMI grade 2 (sluggish) flow in patients with acute 

MI by comparing the contrast density at the distal end of 

the thrombolyzed artery with that proximal to the stenotic 

 lesion. For TIMI 3, the ratio of CTCA number distal to CTCA 

number proximal should be greater than 0.54. CTCA can be 

used to check on coronary reperfusion after thrombolysis 

without any invasive procedure. 

 

6. Plaque composition on CTCA and 
risk prediction 

Due to the high resolution of CTCA images, the atheroma's 

composition can be depicted in exquisite detail. (Figure 7) 

Instead of exclusively soft plaques, we discovered that 

mixed plaques with soft and calcific portions are 

substantially more likely to rupture (13). It is now 

established that plaque morphology influences primary 

prevention, predictors of ischemia, and prognosis. Plaque 

composition, namely calcified vs soft and/or mixed plaques, 

as well as the presence of soft or mixed plaques, have been 

proven to be the highest predictor of events as a likely 

measure of plaque vulnerability, regardless of lesion 

severity. (Figure 8) (14, 15). The complete coronary tree is 

visible, and the overall plaque load and extent of diseased 

segments are assessed. 

 

 
Figure 5. A 57-year-old man presented to the emergency room with chest discomfort. The ECG, echocardiogram and cardiac biomarkers were negative. However, CTCA 

revealed significant calcified plaque burden in the coronary arteries. Panels A, B and C show calcified mid LAD plaque causing more than 80% stenosis (pink arrow). Panels D 

and F show diffuse distal disease of the major OM branch (green arrow). Panel E shows a significant stenosis at the LCx- (posterior descending artery) PDA ostium (pink arrow). 

The patient was treated with a three vessel CABG with grafts to LAD, Diagonal and the LCx – PDA. 
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7. Plaque regression assessment by 
CTCA 

The detection of early CAD on CTCA would be useless if it 

could not be resolved with medication. Several multicenter, 

randomized lipid-lowering trials utilizing both invasive 

catheter angiography (ICA) and clinical assessment, on the 

other hand, found a minimal change (1 to 3%) in luminal 

diameter on ICA. Nonetheless, these same studies found a 

25% to 75% reduction in severe occurrences, such as 

myocardial infarction (16,17). 

 

 

 
Figure 6. Panel A shows a curved reconstruction with a mixed plaque in the mid LAD. The 3D image gives the relation of the stenotic segment to side branches as well as the 

curvature of the artery in panel B. The lesion length and vessel diameter can be measured in Panel C. Panel D shows the myocardium in the 2 chamber long axis view revealing a 

dark area in the sub-endocardium of the anterior wall representing a perfusion defect at rest. Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 

160 slice cardiac CT scanner. 

 

This shows that the benefits of lowering lipids come from 

stabilizing lipid-rich plaques, not from changes in the size of 

the ICA lumen. CTCA is able to accurately measure the 

diminution in plaque size. Even at modest doses, the 

administration of statins may cause significant changes in 

the CTCA plaque shape, an absolute reduction in plaque 

volume without a discernible change in lumen size, and 

variations in lipid profile that are not statistically 

meaningful. This shows that plaque morphological changes 

may emerge early on, even with only modest alterations to 

the lipid profile, as a result of statin therapy (18). 
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Figure 7. Panel A shows two eccentric mixed plaques marked by white dots in the proximal LCx artery with a soft component and a small, calcified nodule. Inset shows the 

cross section of one of the plaques. Panel B shows a thick eccentric soft plaque with no calcified component marked by white dots in the proximal LAD artery. Inset shows the 

plaque in cross section. 

 

8. Stress myocardial CT perfusion (CTP) 
CTP contains anatomic as well as physiological information 

(i.e., myocardial perfusion). The viability of stress myocardial 

CTP has been shown in multiple single-center studies. In 

addition, it has been demonstrated that a combination 

CCTA/CTP strategy increases the diagnostic accuracy for 

detecting hemodynamically severe stenosis compared to 

CTCA individually. Stress and reversible myocardial perfusion 

deficits detected by CTP utilizing a visual semi-quantitative 

technique and a visually guided software-based method are 

comparable to those assessed by SPECT (19,20). 
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Figure 8. An eccentric ruptured plaque is seen along the inferior wall of the LAD marked by white dots. The straight arrows show the central ulceration on the plaque luminal 

surface. The arrowhead marks the cavity within the plaque filled with intraluminal contrast. Another plaque is seen marked by stars in the anterior wall of the LAD. This shows 

an ulceration along the inferior shoulder (curved arrow). Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. 

 

9. CT fractional flow reserve (CT-FFR) 
CT- FFR predicts the functional relevance of coronary artery 

lesions using computational fluid dynamics. The strongest 

indicator of a positive CT-derived FFR, according to the 

Assessing Diagnostic Value of Non-invasive FFRCT in 

Coronary Care (ADVANCE) Registry, is stenosis greater than 

70%. However, the ADVANCE Registry, like invasive FFR 

studies, demonstrates that there is a gap between 

morphological assessment of coronary stenosis and the 

physiological consequences of such lesions. 28.4% of severe 

lesions were found to have no functional significance. 

Similar to this, there is a positive CT- FFR rate of 20.8% in 

patients with non-obstructive coronary structure (stenosis 

grade 30-49%) (21). 

10. Coronary Bypass Graft (CABG) 
imaging on CTCA 

CTCA is quite reliable for determining graft patency after 

CABG. In a 3D picture, it shows every graft together. 

Studying the native arteries in relation to the failed grafts 

enables a therapeutic strategy to determine whether a PCI 

is warranted. In our study, we discovered that regardless of 

the number of years following CABG, 72% of all grafts, 

including LIMA, SVG, RIMA, and LRA, failed when placed on 

coronary arteries with less than 75% stenosis as opposed to 

22.8% of grafts failing when positioned on coronary arteries 

with more than 75% stenosis (p < 0.0001) (Figure 9) (22). 
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Figure 9. A 67-year-old man 6 years post CABG comes with recurrence of angina. Sequential LIMA to Diagonal and Obtuse marginal as well as saphenous vein grafts (SVG) to 

LAD, right ventricular branch and right PDA are patent. However, short critical stenosis is seen in the proximal segment of the SVG to LAD (green curved arrow) as well as the 

SVG to PDA (orange arrow). These were successfully stented. Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. 
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11. Conclusion 

In the modern era, CCTA has developed into an ideal test 

that can accurately and consistently image the true severity 

of coronary artery stenosis, a detailed representation of the 

atheroma causing this, the downstream impact on the 

myocardium, and functionality of the heart with minimum 

contrast dose and radiation in a short time with no patient 

discomfort. 

CTCA demonstrates that the existence of soft and mixed 

plaques can result in higher major cardiovascular events 

score than a clinical risk model, regardless of the severity of 

the lesion. CTCA can be utilized in the emergency unit to 

check the coronary arteries and determine who needs to be 

hospitalized for an acute cardiac problem quickly and 

noninvasively. For patients who do not experience a cardiac 

incident, it is confidently concluded that a secure and early 

discharge is appropriate. By demonstrating a decrease in 

plaque volume, CTCA could be able to show a meaningful 

effect at lower statin doses. 

It has been demonstrated that CACS improves risk 

categorization and discrimination for significant CAD and 

CVD irrespective of Framingham risk variables in 

asymptomatic community-dwelling individuals. CT-FFR, in 

conjunction with CTCA, could become the optimum test for 

assessing the functional relevance of a stenosis and guiding 

therapies. 

 

12. Image/Figure Courtesy 

All images are the courtesy of Advantage Imaging and 

Research Institute, Mylapore, Chennai, India. 
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The association between technical breakthroughs and 

human well-being in terms of life expectancy has been well 

established through the past several centuries. Since its 

development in the 19th century, radiology has expanded 

swiftly to improve diagnosis and thereby treatment of 

disease for hundreds of millions of patients all over the 

world. The medical sector has been revolutionized by the 

introduction of cutting-edge technologies and methods that 

have increased productivity, decreased costs, and increased 

patient safety. Radiology, in conjunction with pathology, has 

become an essential component of both the diagnostic and 

treatment processes utilized for a wide variety of diseases.  

Radiology services are now a crucial component of every 

hospital, including in small hospitals and nursing homes, to 

find the root cause of illness in patients. It includes X-rays, 

Ultrasonography, Computerized Tomography (CT) scans and 

Magnetic Resonance Imaging (MRI) scans, Positron Emission 

Tomography (PET), Ultrasound etc. There are around 50,000 

MRI1 and over 300,000 CT systems installed worldwide. 

Furthermore, there are roughly 1,600 PET/CT systems in use 

worldwide. Access to modern imaging systems like CT is 

restricted in low- and middle-income countries (LMIC), with 

most available models being 16-slice or less, although a 

trend to higher-end imaging systems is emerging. The 

current standard for magnetic field strength in LMIC is 1.5T 

MRI. 3T MRI access is considerably more limited. Japan has 

the largest per capita number of MRI (55.21 per million 

population) and CT systems among developed nations, 

followed by the United States and Germany. For LMICs like 

South Africa, India, Mexico, and the Middle East, the MRI 

systems per million population are 0.23, 1.50, 2.57, and 

1.90, respectively2. 

 

 

 

 

According to a survey, there are currently about 30,000 CT 

systems and 3,500 MRI3 systems in India. Now, multi-

detector CT systems are commonly seen in use and 64- and 

128-slice systems have become a reality. It will not be 

surprising if the figure doubles in the next ten years. The 

next decade will be dominated by molecular imaging 

worldwide, and developing nations are quickly catching up. 

There are currently 222 PET/CT4 systems in India 

performing around half million PET/CT scans annually.  

The International Agency for Research on Cancer (IARC) 

estimates that 18 million new cases of cancer and 10 million 

cancer deaths were reported in 2020. The load may 

increase in the future because of a number of factors, 

including sedentary lifestyles, unhealthy diets, and fewer 

births in nations that are transitioning economically. We are 

currently observing good trends in developed countries; the 

expansion of healthcare facilities will undoubtedly promote 

the expansion of radiology services, which can aid 

Radiologists in the diagnosis of life-threatening disease like 

cancer. However, many developing and underdeveloped 

nations experience difficulties in effectively implementing 

sub-specializations of radiology. These difficulties include a 

lack of money, inadequate infrastructure and equipment, a 

lack of knowledge, politics, the emigration of radiologists, 

perfectionism, and others. The other two problems are a) 

accessibility and b) awareness, both of which are equally 

crucial. Access to hospitals is another concern, as people 

from remote areas may have to travel for several days to 

reach a city hospital. This, along with the high cost of care, 

causes many people to visit hospitals only as a last option, 

resulting in poor outcomes for many diseases.  
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Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging. 
2022 Jun 1;23(6):e246-e260. doi: 10.1093/ehjci/jeab286. PMID: 35157038; PMCID: PMC9159744. 
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Over the past few years, Artificial Intelligence (AI) has 

attracted immense attention in the field of medicine, 

particularly in radiology. In the next ten years, the use of AI 

in radiology will be a significant advancement that will result 

in a massive paradigm shift in how radiology is managed 

globally. We believe that the introduction of AI into clinical 

practice is the only way to bend the current demand-supply 

mismatch between the number of scans that need to be 

read and the Radiologists available to read them. With vast 

amounts of data now readily available, and a new wave of AI 

algorithms which are much more sophisticated and holistic 

than before, it is clear that the radiology department of the 

future will run hundreds of AI systems in tandem. AI will 

contribute to the global development of personalized 

precision medicine and provide individualized treatment 

alternatives. Radiologists around the world must 

understand these potential AI areas of application and 

should be strongly encouraged to help shape the future of 

Radiology and medicine by becoming the driving force 

behind the development and implementation of AI in 

clinical practice.  India is uniquely positioned in this AI race 

for two key reasons. First, India has highly skilled physicians 

that are trained in challenging clinical settings. Secondly, 

India is extremely heterogenous in terms of the diseases / 

patient-base – with the presence of both western and 

eastern diseases in a single country. This combination 

allows for India to be best suited for AI implementation in 

the clinical setting. 

 

 

 
Figure 1. Graph of number of AI in Radiology based publications by country from year 2000 to 2019. 

 

The market size5 for AI in healthcare surpassed USD 4.2 

billion in 2020 and is predicted to expand at a CAGR of 

approximately 33.7% between 2021 and 2027. In 2020, the 

medical imaging & diagnosis market sector held around 

24.6% market share. The uses of AI in modern healthcare 

practices continue to grow.  

 

 

5https://www.gminsights.com/toc/detail/healthcare-artificial-intelligence-market 
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Figure 2. AI in the Radiology market, 2022 (million USD) by region, based on usage and growth. 

 

Healthcare is expensive, and cost is widely regarded as the 

industry's most significant impediment worldwide. This 

major impediment can be overcome by lowering scanning 

and operational expenses without compromising system 

quality. The training of more imaging specialists to fulfill the 

excessive demand, the transformation of existing 

Radiologists into subspecialty Radiologists, and the 

reduction of the high operating, scanning, and equipment 

expenses of MRI and CT scans are a few potential solutions. 

New solutions can be achieved by expanding exchange 

programs among Radiologists and residents from various 

countries and sharing their expertise. In less developed 

nations, the availability of subspecialist radiology training is 

limited. To overcome this shortcoming, cost-effective and 

innovative training methods are required. MRI systems that 

can detect diseases and injuries presently cost up to $3 

million and have monthly operating costs of roughly 

$15,000, making them inaccessible for 70% of the world's 

population6. The image quality resulting from earlier 

attempts to create more economical scanners has not been 

sufficient to be used for medical applications. However, 

technical improvements in the last two years have raised 

the prospect of "generating brain images with low-cost 

hardware7.” 

Current CT systems with 32 or 64 slices are up to four times 

faster than earlier models8. Machine learning has created 

the great potential to advance medical imaging, specifically 

CT scanning, by reducing exposure to radiation and by 

harnessing the power of AI. Newer digital technologies, 

including voice recognition and structured formatted 

reporting, also improve Radiologists' workflow, productivity, 

and reporting accuracy. Over the next decade, we will see 

more and more imaging departments across the world 

recognize the need to embrace digital technologies and 

profit substantially as a result. Tele-Radiology will be 

increasingly implemented in less developed nations, 

allowing for three changes: increased reach of high-quality 

radiologic services to remote regions, more sub-

specialization within the field of radiology, and increased 

availability of emergency radiology services. 

The time has come for developing countries to implement 

continuing medical education programs for professional 

Radiologists, and improve access to imaging equipment, 

workforce capacity, digital technologies, and PET 

radiopharmaceuticals. In recent years, a growing number of 

similar programs have emerged in low- and middle-income 

nations to produce substantial health and economic 

benefits and reduce the cancer burden globally. In fact, 

United Imaging’s entry into India with the latest technology 
is testament to the fact that India is now ready to receive 

attainable innovative imaging systems. We have been using 

their PET/CT (uMI® 550) system for the past year and 

everyone – from patients to clinicians to Nuclear Medicine 

Physicians – is amazed at the quality of images, and 

reduction in 18F-FDG dose and scan time. 

 

 
6https://www.natureasia.com/en/research/highlight/13913 
7Liu, Y., Leong, A.T.L., Zhao, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12, 7238 (2021). 
8https://www.neurologica.com/blog/advances-ct-scan-technology 

https://www.natureasia.com/en/research/highlight/13913
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1. Introduction  

PET/MR has been utilized as an important medical imaging 

technology in clinical radiology for more than a decade. The 

introduction of the integrated PET and MR modalities has 

made it possible to simultaneously acquire high-resolution 

MR images with excellent soft tissue contrast [1-2] with 

metabolic PET images while minimizing ionizing radiation 

exposure to the patients. Furthermore, advances in 

improved attenuation correction [3-7] and MR triggered 

motion correction [8-11] have led to improved image 

quality, making PET/MR a preferred imaging modality [12].  

Once such clinical application where PET/MR is particularly 

advantageous and shows potential for innovation is the 

assessment of non-ischemic cardiac disease [13]. Cardiac 

PET [14-15] allows for the assessment of cardiac viability or 

perfusion using different tracers. With evolving advanced 

MR imaging sequences, anatomic and functional analysis of 

the heart and large vessels has manifested in the form of 

high-definition cine sequences providing dynamic 

visualization of the heart and vascular structures. First-pass 

imaging of contrast medium transit through the 

myocardium has also been shown to depict stress-induced 

alteration in myocardial blood flow, differentiating between 

normal and hypo-perfused myocardium [16]. The accuracy 

of PET for the measurement of unmatched regions of 

myocardial perfusion, biomarkers and myocardial viability 

has further contributed to the increasing scope of 

applications for PET/MR imaging. 

Of the different cardiac applications of PET/MR, the 

detection of presence and extent of myocardial fibrosis is 

one of relevance in various cardiac diseases. Both the PET 

and MR modalities in such cases can not only quantify the 

fibrosis, but also offer insight into early detection and 

prognostication of such underlying conditions. The aim of 

this article is to review the existing technologies and clinical 

examples of PET/MR imaging in the evaluation of four main 

non-ischemic causes of myocardial fibrosis, namely non-

ischemic cardiomyopathies, cardiac amyloidosis, 

myocarditis and heart failure. All cardiac PET/MR studies 

were performed on a United Imaging Healthcare’s uPMR® 

790 system (United Imaging Healthcare, Shanghai, China). 

 

2. Technical review of PET/MR 
technology 

2.1 PET radiotracers 

While 82Rb-RbCl, 13N-NH3.H2O and 15O-H2O are the common 

radiotracers utilized in PET perfusion, there have been 

newer PET imaging agents being studied for various cardiac 

applications. Table 1 summarizes these novel cardiac PET 

imaging radiotracers, and their target disease processes. 
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Table 1. summary of novel PET radiotracers in evaluation of cardiac disease. 

Target disease process Cardiac PET radiotracers 

Perfusion 13N-NH3, H2O, 82Rb, 15O-H2O, 18F-flurpiridaz 

Myocardial sympathetic nerve activity 11C-hydroxyephedrine, 18 F-LMI1195 

αvβ3 and αvβ5 integrins in angiogenesis 

or post myocardial infarction reperfusion 

18F-Fluciclatide 

Cardiac amyloid 11C-PIB, 18F-florbetapir, 18F-flutemetamol, 18F-florbetaben 

Fibrosis 68Ga-FAPI, 18F-FAPI 

Atherosclerotic microcalcification 18F -NaF 

Tissue hypoxia 18F-MISO, 18F-HX4, 64Cu-ATSM, 64Cu-CTS 

Angiogenesis 68Ga -NOTA-RGD, 18F -galacto-RGD 

Macrophage-dependent inflammation  68Ga-pentixafor, 64Cu-DOTATATE, 68Ga-DOTATATE, 89Zr-DNP 

 
 
 

2.2 CMR sequence technology 

Table 2 summarizes the commonly used MRI sequences in 

the anatomic, functional, and biochemical characterization 

of myocardial tissue. As described in the applications below, 

these sequences provide information on early and late 

stages of various non-ischemic conditions [17]. 

 

Table 2. summary of commonly used sequences in the assessment of myocardial tissue and the relevant applications or findings. 

Specific CMR sequence Relevant application/finding 

CINE T1W Function, anatomical details, fat 

Black Blood T2W Anatomical details, edema 

T1 mapping Fibrotic areas (regional or diffuse), amyloidosis, fat 

T2/T2* mapping Edema, iron 

ECV mapping  Fibrotic areas (regional or diffuse), amyloidosis 

Late gadolinium enhancement Fibrotic areas (regional fibrosis), viability 

 
 

2.3 PET/MR cardiac image registration 

The main challenge for cardiac PET in clinical practice is the 

compensation of physiologic motion, such as respiratory 

and cardiac motion, for which a few methods have been 

developed to overcome the problem [18-20] including a two-

stage cardiac PET and LGE co-registration method (Figure 1) 

[21]. 
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Figure 1. Two-stage cardiac PET and MR LGE co-registration method. 

 

Figure 1 is an illustration of image co-registration of LGE and 

PET with two-stage registration. This comprises of four 

stages. The first is binning of list-mode PET data into eight 

respiratory bins based on respiratory signal. The second 

step is comparison of FLASH and respiratory phase resolved 

PET to choose one FLASH-registered phase. Thirdly, rigid 

registration is manually performed between 3D FLASH and 

2D LGE and get the 3D displacement field. Finally, the 

displacement field is used to warp the images and generate 

LGE-registered PET.  

 

3. Non-ischemic cardiomyopathies – 
hypertrophic and dilated 
cardiomyopathies  

Non-ischemic cardiomyopathies are defined as diseases of 

the myocardium associated with mechanical or electrical 

dysfunction exhibiting inappropriate ventricular 

hypertrophy or dilatation and include dilated 

cardiomyopathy (DCM) and hypertrophic cardiomyopathy 

(HCM). Causes include primary and secondary causes, 

encompassing genetic and acquired factors. CMR remains 

the main diagnostic tool for distinguishing many of these 

diseases; however, for certain diseases, PET can add 

valuable information by characterizing metabolic activity in 

the myocardial region.  

LGE sequence can detect focal myocardial fibrosis and 

provide significant risk stratification for sudden cardiac 

death, mortality, and heart failure hospitalization in patients 

with non-ischemic cardiomyopathy [22]. The combination of 

metabolic information from 18F-fluoro-deoxy-glucose PET 

(18F-FDG PET) and LGE can also provide additional evidence 

for the evaluation of myocardial viability and inflammation 

in non-ischemic cardiomyopathies.  

 

Case Example 

A 67-year-old male patient with known dilated 

cardiomyopathy (DCM) was evaluated for myocardial 

viability assessment. 18F-FDG PET/MR was performed at an 

uptake time of 60 minutes. Figure 2 shows short axial LGE 

images (A, C) and LGE/PET fusion images (B, D) of two LGE-

enhanced lesions. 
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Figure 2. PET/MR images of a patient with dilated cardiomyopathy (DCM). Short axial LGE images (A, C) and LGE/PET fusion images (B, D) show two LGE-enhanced lesions. 

 

4. Cardiac amyloidosis (Restrictive 
cardiomyopathy) 

Cardiac amyloidosis is a myocardial condition characterized 

by extracellular amyloid infiltration throughout the heart 

and is the leading cause of morbidity and mortality in 

systemic amyloidosis. The two types of amyloid that 

commonly infiltrate the heart include acquired monoclonal 

immunoglobulin light chain amyloid (AL) and transthyretin-

related (familial and wild-type/senile) amyloid (ATTR).  

Differentiation of the two types is important because they 

have different prognoses and are amenable to different 

management strategies. 

Early cardiac amyloidosis is challenging to diagnose and 

may only present with the features of right-sided congestive 

heart failure in advanced disease. While endocardial biopsy 

is considered the gold standard for diagnosis of cardiac 

amyloidosis, it is not commonly used due to its high rate of 

complications. Other non-invasive diagnostic methods used 

include electrocardiography, echocardiography, CMR and 

nuclear medicine imaging.  

Steady state free precession cine sequences in CMR are 

used to assess cardiac function and structure, while LGE 

imaging can diagnose cardiac amyloidosis. Although CMR is 

sensitive and specific for cardiac amyloidosis, CMR 

classically cannot differentiate the subtypes of cardiac 

amyloidosis and PET imaging is useful in this regard. 

However, recent studies have shown that AL frequently 

manifests as diffuse subendocardial LGE, while ATTR 

typically manifests as transmural LGE. MR parametric 
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mapping has also shown that the T1 value of ATTR patients 

was significantly higher than that of hypertrophic 

cardiomyopathy and normal controls, but not as high as 

that of AL patients, further helping in the characterization of 

cardiac amyloidosis.  

Nuclear medicine imaging plays an important role in the 

diagnosis, classification, prognostic evaluation, and 

therapeutic response monitoring of myocardial amyloidosis 

[23-24]. Studies using 18F-NaF PET imaging [25-26] have 

shown that the myocardial uptake in ATTR patients is higher 

than AL patients and control groups, and the myocardial 

radioactivity uptake was consistent with the extent of 

damaged myocardium as seen on MR LGE. Similar studies 

have shown differences in uptake using 18F-florbetapir and 
18F-florbetaben imaging in both ATTR and AL patients [27-

28]. Hence, an important benefit of combining PET with 

CMR is the combination of quantifiable parameters to 

potentially aid prognosis and track disease progression. 

Case Example 

A 65-year-old female with underlying history of amyloidosis 

presented with chest congestion and dyspnea. 

Echocardiography revealed pericardial effusion, pleural 

effusion, interventricular septum and left ventricular wall 

thickening. Gadolinium contrast enhanced CMR and 

dynamic cardiac PET imaging (Figure 3) was performed 

immediately after injection of 18F-florbetapir (AV45). CMR 

imaging revealed LV hypertrophy and impaired systolic 

function (LVEF=22%). LGE imaging (B, short axis view; E, 4 

chamber view) demonstrated transmural late enhancement 

in the left ventricle. Delayed whole body maximum intensity 

PET (A, 90min post-injection) demonstrated elevated AV45 

uptake in heart (SUVmax=8.86), lung (SUVmax=2.69) and 

spleen (SUVmax=7.75), compared to moderate uptake in the 

liver (SUVmax=3.09) caused by hepatobiliary excretion of 

the drug. 

 

 

 
Figure 3. PET/MR images of a patient with cardiac amyloidosis. 

 

5. Myocarditis 

Myocarditis is an inflammatory disease of the myocardium 

that can be caused by various conditions including viral 

infections, autoimmune reactions, toxin exposure, drugs, 

and idiopathic factors [29].The condition has a predilection 

in young subjects, especially males [30]. Clinical symptoms 

are highly variable, making diagnosis challenging. In 

addition, investigations such as laboratory biomarkers (such 

as troponin, C-reactive protein), electrocardiography and 

echocardiography are nonspecific. Definite diagnosis relies 

on endomyocardial biopsy but this is not performed 
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frequently in practice due to its risk of complications. 

Pathophysiological processes linked to myocardial 

inflammation, including myocardial hyperemia and edema 

in the early stages, and fibrosis or scarring in the later 

stages, as well as associated processes such as pericardial 

effusion and global or regional wall motion abnormalities, 

can be assessed using MR imaging [31]. The Lake Louise 

CMR criteria often used in assessment of myocarditis 

encompasses the three aspects of myocardial inflammation 

namely edema, hyperemia and necrosis and/or fibrosis. In 

addition to these, multiparametric T1 and T2 mapping can 

also be used for tissue characterization. 

The use of 18F-FDG PET [32] allows accurate assessment of 

the extent and grade of both active and healed 

inflammatory processes. FDG uptake in myocarditis could 

be focal, diffuse, or ‘focal on diffuse’ depending on the 
underlying disease [33]. Thus, 18F-FDG PET/MR imaging has 

already been shown to be highly clinically relevant in 

patients with suspicion of myocarditis, with increasing 

evidence that 18F-FDG PET/MR imaging can diagnose, grade, 

and monitor myocarditis [34-36], with a clinical sensitivity of 

74% and a specificity of 97% [37]. Notably, it has also been 

shown that patients with biopsy-proven myocarditis have 

had abnormal uptake noted on 18F-FDG PET imaging, while 

having no corresponding evidence of myocardial damage on 

MR imaging, allowing for early diagnosis of myocarditis. 

Performing FDG PET imaging after treatment could also 

show interval improvement or resolution of the abnormal 

FDG uptake, highlighting further potential application in 

monitoring treatment response [38]. 

Case Example 

A 24-year-old male presented with signs and symptoms 

suggestive of myocarditis. Gadolinium contrast enhanced 

CMR and dynamic cardiac PET imaging starting immediately 

after injection of 18F-FDG (Figure 4). CMR imaging showed 

normal anatomy of the atrioventricular chambers with 

normal left ventricular motion and function (LVEF 70%). 

Delayed enhancement imaging showed blurred patchy, 

slightly high signal and line-like high signal in the basal 

segment of the anterior and inferior lateral walls of the left 

ventricle, and no obvious abnormal enhancement was 

found in the remaining ventricular wall segments. 

Myocardial metabolic imaging revealed increased 

radioactive uptake in each segment of the left ventricle. 

 

 

 
Figure 4. PET/MR images of a patient with myocarditis. 
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6. Heart Failure 

Heart Failure is defined as a complex clinical syndrome 

resulting from any structural or functional cardiac condition 

that impairs the ability of the ventricle to fill or eject blood 

[39]. Several criteria have been proposed to diagnose heart 

failure such as the Framingham criteria [40]. 

Echocardiography is frequently used to provide information 

on the ventricular ejection fraction as well as the underlying 

cause of heart failure. Single-photon-emission computed 

tomography (SPECT) remains the most common imaging 

modality used for myocardial perfusion imaging in heart 

failure, but it has significant disadvantages such as limited 

resolution and involves the use of ionizing radiation. Due to 

these factors, there has been increasing use of myocardial 

perfusion imaging using PET to quantify myocardial blood 

flow using tracer kinetics, for which the sensitivity and 

specificity is thought to be approximately 90% [41-44]. It is 

also notable that a meta-analysis of single and multi-center 

studies confirmed the excellent sensitivity and specificity of 

CMR to quantify myocardial perfusion at rest and during 

stress [43-44]4. There is report showing that MR perfusion 

imaging is compared to that of SPECT and showed 

significant agreement in results with PET perfusion [45-46]-

46. The combination of PET and MR imaging allows for direct 

comparison of myocardial blood flow under resting and 

stress conditions. The assessment of myocardial viability is a 

standard approach utilized in patients with advanced 

coronary disease or who are in early or advanced states of 

heart failure. Identification of glucose utilization in viable 

myocardium by PET is made possible by FDG uptake 

demonstrated in myocardial segments with decreased 

perfusion. Based on meta-analyses, 18F-FDG PET predicts 

functional recovery after revascularization with a sensitivity 

of 92% and a specificity of 63% [47-48]. LGE also allows the 

identification of scarred myocardium as signal enhanced 

areas.  

 

Case Example 

Figure 5 shows an example of 68Ga-FAPI and FDG PET 

imaging of a 77-year-old male with history of coronary 

artery disease, that presented with acute pulmonary 

embolism. Echocardiography showed severe pulmonary 

hypertension (pulmonary artery systolic blood pressure 

elevated at 99mm Hg), right atrioventricular enlargement, as 

well as decreased right ventricular motion and function, 

with normal left ventricular systolic function. Pulmonary 

angiography and balloon angioplasty was performed and 

revealed multiple filling defects in the bilateral pulmonary 

arteries with poor distal perfusion. Gadolinium contrast 

enhanced CMR and dynamic cardiac PET imaging starting 

immediately after injection of 68Ga-FAPI was performed 

(Figure 5). Gadolinium contrast enhanced CMR and dynamic 

cardiac PET imaging starting immediately after injection of 

FDG was performed the following day. CMR showed right 

atrial and ventricular enlargement and hypertrophy as seen 

in the 4-chamber and short axis views. 68Ga-FAPI PET/MR 

imaging showed diffusely increased FAPI uptake in the right 

atrial muscle wall and increased scattered patchy FAPI 

uptake in the right ventricular muscle wall. 18F-FDG PET/MR 

fusion images demonstrated that radioactivity uptake in the 

right ventricle and atrium were increased, more so in the 

right ventricle. 
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Figure 5. 68Ga-FAPI and FDG PET/MR images of a patient with heart failure and extensive fibrosis. 

Figure 5A 

Figure 5B 
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7. Conclusion and Future Directions 

Currently, there are three vendors providing PET/MR 

integrated scanners worldwide: Siemens Biograph mMR 

(2010), GE SIGNA (2013) and United Imaging Healthcare’s 

uPMR® 790 (2017). The hybrid MR and PET imaging has 

demonstrated its clinical advantage in many cardiac 

applications and is increasing used in clinical routine 

imaging. Some disadvantages to this advancing technology 

exist, including the high cost of PET/MR exams and the 

complex technology requiring significant training in both 

PET and MR technology for technologists to run the scans. 

In addition, several cardiac devices including pacemakers, 

implantable cardioverter-defibrillators, and mechanical 

heart valves, as well as some coronary stents, are 

contraindications to PET/MR scans. However, with further 

improvements in PET/MR imaging technology and more 

studies evaluating the use of new imaging tracers, there is 

an exciting potential to harness the advantages of PET/MR 

in evaluating different cardiac diseases. Prospective single-

center and multi-center study with large sample size are 

urgently needed to further explore the indications and new 

application area of integrated PET/MR. 

 

8. Image/Figure Courtesy 

All images are the courtesy of Shanghai East Hospital, Tongji 

University School of Medicine, Shanghai, China.  
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1. Background  

Aotearoa New Zealand, an island nation in the middle of the 

Pacific Ocean, is split into two main land masses, with a 

collective land area equivalent to that of the state of 

Colorado. New Zealand’s land mass, however, stretches in a 
north-south orientation, equivalent to the distance from 

Pennsylvania to Florida. The country is also sparsely 

populated relative to its land area, with a population of only 

5 million and only 50% of the population residing in one of 

six major urban centres1,2.   

In total, there are only six PET/CT scanners in New Zealand, 

of which five are located in three major urban centres on 

the North Island, and one is a solitary PET/CT scanner on 

the South Island. The largest city in New Zealand, Auckland, 

in the upper North Island (population of 1.5 million), has 

three of the six PET/CT scanners3.   

At Mercy Radiology, a private radiology group with a long 

history of excellence in molecular imaging, we operate two 

of the three PET/CT scanners in Auckland. We are also 

proud to have the only New Zealand’s PET/CT facilities with 
digital PET scanners: United Imaging’s uMI® 550 and uMI® 

780.   

To understand our molecular imaging journey, it is useful to 

start with the New Zealand health landscape. Healthcare is 

delivered to New Zealanders in a two-tier system: the public 

health sector, which is funded by taxpayers providing 

universal health coverage, and the private sector.   

Public health sector services include acute and elective 

inpatient care, outpatient, mental health and long-term 

care. Imaging needs are provided by in-hospital radiology 

departments and outpatient centres.  

 

 

 

 

 

Total New Zealand government health spending as 

percentage of GDP is just under 10% in 2019 and is 

expected to have been increased in the last 2 years4.   

The private sector on the other hand, is made up of smaller 

outpatient specialists’ offices, smaller private hospitals and 
private radiology providers. Private sector work is funded by 

private insurance companies, self-funding patients or the 

New Zealand government by way of outsourced public 

hospital work. Treatments and associated imaging related 

to accidents, usually conducted in the private sector, are 

covered by a no-fault Accident Compensation Scheme 

(ACC).  

All six PET/CT scanners in Aotearoa New Zealand are 

currently operated by private radiology groups. The New 

Zealand Ministry of Health determined several years ago 

that rather than providing for a PET/CT facility in one of the 

many public hospitals in the country, patients treated in the 

public sector would be outsourced to private PET providers 

for their PET/CT scans. Currently, provided that patient’s 
disease status meets one of the numerous approved 

national criteria for a funded PET/CT scan, patients would 

be able to access a fully funded PET/CT scanner.      

Despite a clear pathway allowing patients to access a 

PET/CT scan, with 760 scans per million of population, OECD 

Health Statistics (2) suggests an overall underutilisation of 

PET/CT scanners in Aotearoa New Zealand. Although the 

numbers are likely to be at least twice that once privately 

funded patients are taken into account, it remains much 

lower than Aotearoa New Zealand’s neighbour, Australia, 
which performs 4,500 scans annually per million of 

population.  

 

 

 

 

*Mercy Radiology New Zealand has a research agreement with United Imaging Healthcare. Dr. Remy Lim is a principal investigator on a research grant funded by United 
Imaging Healthcare. 

1https://en.wikipedia.org/wiki/List_of_New_Zealand_urban_areas_by_population 
2https://en.wikipedia.org/wiki/New_Zealand 
3https://www.stuff.co.nz/national/health/300667942/new-mobile-cancer-scan-unit-hitting-the-road-to-help-ease-barriers-waittimes  
4https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?locations=NZ  
5https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html 
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Based on the IMAGINE database developed by the 

International Atomic Energy Agency (IAEA), the number of 

PET scanners in a high-income country such as New Zealand 

is expected to be 3.6 per million of population5. Based on 

this, New Zealand would be expected to have around 14 

PET/CT scanners.   

At Mercy Radiology we recognised that this underutilisation 

of PET/CT scanners is driven by two major 

constraints.  First, being a sparsely populated country, there 

are geographical barriers to accessing a PET/CT facility. 

Rural New Zealanders are often expected to travel 

significant distances between their homes and the closest 

PET/CT facility. For instance, a patient who lives in the town 

of Gisborne, on the east coast of North Island will need 

travel 380km to access a PET/CT facility in Hamilton, a five-

hour journey on the road. As a result of this geographical 

barrier, New Zealanders who live in the regions or remote 

areas are more likely to encounter obstacles to early 

detection of and treatment for their cancer.    

Secondly, the collective capacity of the current fleet of 

PET/CT scanners scattered throughout the country is 

woefully inadequate to service the demand for PET/CT 

scans. An appointment for a PET/CT scan can be up to 10 to 

15 business days wait time.  

 

2. Mercy Radiology goals and journey 

In 2019, Mercy Radiology set two goals to address the 

chronic underutilisation and inequality in access to PET/CT 

scans in New Zealand.   

Our first goal is capacity expansion. Having operated a 

solitary PET/CT scanner for the last 12 years, it was apparent 

that we had reached the limit of what we were able to 

achieve with our preexisting centre.  

Our second goal is to improve accessibility. This applies for 

not only our patients who live in the greater Auckland 

region but also patients who live in the rural areas of New 

Zealand.     

So why have we set these lofty goals for ourselves?   

Simply put, we believe New Zealanders deserve the best 

oncological imaging available when they are diagnosed with 

cancer so that they can be optimally managed to achieve 

the best possible health outcomes.   

An additional PET/CT scanner at a sister site remote to our 

preexisting facility is a logical solution to expand our 

capacity and to derisk our reliance on a solitary PET/CT 

scanner. A pre-requisite for the additional PET/CT scanner is 

that it must deliver improved image quality in less time than 

our current 10-year-old scanner.  

From the outset, our evaluation team was convinced that a 

digital PET camera with increased sensitivity and superior 

signal-to-noise ratio compared to an analog scanner would 

be capable of fulfilling these criteria and future proof the 

installed base.  

A second facility would shorten the period patients would 

have to wait for their examination from 10 working days to 

three to five days. A digital PET camera coupled with a 

longer axial field of view would translate to fewer bed 

positions and therefore a shortened PET acquisition time. 

This would improve patient comfort and experience and 

increase overall patient throughput.  

A potential turnaround time of less than 24 hours would be 

facilitated by Mercy Radiology’s team of trained PET/CT 
readers. Ultimately, this would allow our clinicians and 

oncologists to have a complete picture of patients’ disease 
status and manage accordingly.  

Just as importantly, we wanted to work with a vendor who 

would be receptive to our specific needs. Local engineering 

support and excellent applications support fulfilled all the 

critical elements needed to achieve our objectives.  

There are many vendors with digital PET/CT offerings and 

excellent service. How did we end up with two of United 

Imaging’s uMI PET/CT scanners?   

First, there was good alignment of our objectives with 

United Imaging’s mission of providing greater access to 

PET/CT. United Imaging’s digital PET solution included other 
positive physical attributes, such as superior axial field of 

view and air-cooled systems.    

Secondly, United Imaging’s unique Software Upgrades for 
Life™ program speaks to their desire to ensure new 

innovations are available to all of their installed base. The 

program ensures all new systems have the same software 

and core technology. New upgrades are cascaded to their 

existing installed base.    

Third, United Imaging’s All In Configurations™ program 

means transparent costing without the need to navigate 
5https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html 
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through multiple options which would typically increase the 

price of the scanner substantially beyond the starting base 

price.   

Ultimately, it was the digital PET camera’s superior image 
quality, further enhanced and optimised by United Imaging’s 
advanced PET AI algorithm in the form of uAI HYPER DLR 

and uAI HYPER DPR, which cemented our decision to 

proceed with United Imaging’s digital PET/CT scanners.   

In the midst of the pandemic in 2020, we commissioned our 

sister PET/CT site 25 minutes north of our current facility. 

This new PET/CT site caters to the 600,000 Aucklanders who 

reside north of the Auckland Harbour Bridge and over 

200,000 other patients in the northern province of 

Northland.   

Converting a preexisting building which previously housed 

medical consultation rooms and an operating theatre into a 

PET/CT facility with multiple uptake rooms and a hot lab 

with New Zealand’s strict quarantine rules in 2020 was no 

easy feat. Coupled with all the logistical difficulties of COVID 

restrictions and border closure in NZ, this was a project 

destined to be hampered by delays and logistical 

challenges.   

United Imaging demonstrated their commitment to the 

project by ensuring the PET/CT system arrived into the 

country on schedule. Overseas-based installation engineers 

and applications support personnel underwent mandatory 

2-week quarantine to be available at critical times during 

the commissioning phase. Happily, the facility was 

successfully delivered on time and on budget, with the first 

patient scanned in the latter half of 2020.  

In 2021, we turned our attention to our flagship site, where 

we had been operating an analog PET/CT scanner for the 

last 12 years. We had outgrown the facility due to increased 

patient numbers and the introduction of a theranostics 

service line in 2018. We took the opportunity to create a 

dedicated therapy suite that doubles as an additional 

uptake room, having anticipated a decreased scan time 

necessitating more uptake rooms.    

As our flagship site, it was critical for us to have a high 

performing, reliable system to cater for greater patient 

throughput. Our evaluation team, which included our lead 

technologist, undertook due diligence and applied rigour in 

an open tender process before eventually settling on the 

uMI 780.     

In the next 12 months, Mercy Radiology will work to further 

increase patient accessibility to PET/CT scans for our 

regional patients, by embarking on a project to deliver 

Australasia’s first mobile PET/CT.   

The custom designed trailer, incorporating a mobile uMI 550 

unit on board once commissioned, will travel every day to 

service the regions in the North Island of New Zealand, 

obviating the need for regional patients to travel for up to 

six hours simply to have a PET/CT scan.   

 

3. Mercy Radiology’s experience with 
United Imaging  

What has been our experience operating the uMI 550 and 

the uMI 780 so far?  

First, we can attest to the field reliability of the scanners. 

Outside of scheduled down time for preventative 

maintenance, we have had a 100% uptime thus far with 

both scanners.   

The United Imaging development team has been receptive 

to suggestions for workflow improvement.  Our fruitful 

relationship with them has now evolved into a collaboration 

to develop advanced AI algorithm to enhance and optimise 

Prostate Specific Membrane Antigen (PSMA) PET images.  

Secondly, in terms of image quality, our team has seen first-

hand the major step up from analog to digital cameras and 

the progressive image improvement with successive 

iteration of United Imaging’s AI algorithm. This is particularly 
striking when the same patient returns for their follow-up 

studies (see Figure 1-3) on the different platforms.   
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Figure 1. Whole body maximum intensity projection and axial image of a patient with metastatic renal cell carcinoma scanned on the now decommissioned analog 

PET/CT (injection dose: 242 MBq of 18F-FDG, 60 min uptake time, scan time: 2 min/bed position). 

 

 

 
Figure 2. MIP and axial image of the same patient scanned on uMI 550 with HYPER DLR AI PET algorithm (injection dose: 239 MBq of 18F-FDG, 60 min uptake time, scan time: 2 

min/bed position). 
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Figure 3. MIP and axial image of patient with metastatic renal cell carcinoma scanned on uMI 780 with latest generation HYPER DPR, AI PET algorithm (injection dose: 244 MBq 

of 18F-FDG, 60 min uptake time, scan time: 2 min/bed position). 

 

uAI HYPER DLR’s algorithm is based on deep learning 
through artificial neural networks. The algorithm improves 

signal to noise ratio by up to 50%, allowing shorter 

acquisition time if required. It is also effective in reducing 

image noise in patients with high BMI.  

uAI HYPER DPR builds on this, further enhancing the signal 

to noise ratio, accentuating lesion contrast and thus 

improving small lesion detectability. Compared with other 

possible AI algorithms, its unique advantage is that its 

networks were created using United Imaging’s uEXPLORER® 

data. HYPER DPR claims a 32% improvement on noise 

reduction, 66% improvement on image contrast and overall 

2.5 times improvement on SNR.   

As a result, HYPER DLR and HYPER DPR have delivered 

images of consistently high signal-to-noise ratio. PET images 

with low levels of background noise and improved lesion 

conspicuity are now the expectation, even in patients with 

high BMI. In line with United Imaging’s Software Upgrades 

for Life program, the uAI HYPER DPR algorithm has been 

cascaded into our two-year-old uMI 550.  

Third, Mercy Radiology’s in-house applications “superuser”, 
trained in United Imaging’s USA headquarters in Houston, 
Texas, now also serves as our applications support and 

provides support to other Australasian users. Our 

technologists have found United Imaging’s platform to be 
user friendly and intuitive to operate. Combined with 30 cm 

axial field of view, the uMI 780 provides for an efficient 

workflow and has significantly increased our overall patient 

throughput.  

Finally, we have expanded our capacity! PET acquisitions 

that previously required 25 minutes are now completed in 

15 minutes or less on the new uMI 780, freeing up more 

appointment times and facilitating greater patient 

throughput.   

With the uMI 550 and uMI 780, and a mobile uMI 550 in the 

pipeline, Mercy Radiology, in partnership with United 
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Imaging, is well on the way to achieving our twin goals of 

increasing capacity and improving PET/CT accessibility to the 

people of Aotearoa New Zealand.   

 

 

4. Image/Figure Courtesy 

All images are the courtesy of Mercy Radiology, Auckland, 

New Zealand. 
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